29 research outputs found

    Interaction between two Fuzzy Spheres

    Full text link
    We have calculated interactions between two fuzzy spheres in 3 dimension. It depends on the distance r between the spheres and the radii rho_1, rho_2. There is no force between the spheres when they are far from each other (long distance case). We have also studied the interaction for r=0 case. We find that an attractive force exists between two fuzzy sphere surfaces.Comment: Latex file, 13 page

    Dynamical generation of gauge groups in the massive Yang-Mills-Chern-Simons matrix model

    Full text link
    It has been known for some time that the dynamics of k coincident D-branes in string theory is described effectively by U(k) Yang-Mills theory at low energy. While these configurations appear as classical solutions in matrix models, it was not clear whether it is possible to realize the k =/= 1 case as the true vacuum. The massive Yang-Mills-Chern-Simons matrix model has classical solutions corresponding to all the representations of the SU(2) algebra, and provides an opportunity to address the above issue on a firm ground. We investigate the phase structure of the model, and find in particular that there exists a parameter region where O(N) copies of the spin-1/2 representation appear as the true vacuum, thus realizing a nontrivial gauge group dynamically. Such configurations are analogous to the ones that are interpreted in the BMN matrix model as coinciding transverse 5-branes in M-theory.Comment: 4 pages, 3 figures, (v3) some typos correcte

    Solution of KdV Equation by Haar Integration Method

    Get PDF
    Haar wavelets is used to get a simplified algebraic form of Korteweg-de Vries (KdV) equation. Here Taylor's series expansion is also used to get some iterative formula which is further used to get numerical solutions. More approximate solutions can be obtained by increasing the order of the matrix of integration

    High Temperature Limit of the N=2 N= 2 IIA Matrix Model

    Get PDF
    The high temperature limit of a system of two D-0 branes is investigated. The partition function can be expressed as a power series in β\beta (inverse temperature). The leading term in the high temperature expression of the partition function and effective potential is calculated {\em exactly}. Physical quantities like the mean square separation can also be exactly determined in the high temperature limit. We comment on SU(3) IIB matrix model and the difficulties to study it.Comment: Lattice 2000 (Gravity and Matrix Models

    A Unified Treatment of the Characters of SU(2) and SU(1,1)

    Full text link
    The character problems of SU(2) and SU(1,1) are reexamined from the standpoint of a physicist by employing the Hilbert space method which is shown to yield a completely unified treatment for SU(2) and the discrete series of representations of SU(1,1). For both the groups the problem is reduced to the evaluation of an integral which is invariant under rotation for SU(2) and Lorentz transformation for SU(1,1). The integrals are accordingly evaluated by applying a rotation to a unit position vector in SU(2) and a Lorentz transformation to a unit SO(2,1) vector which is time-like for the elliptic elements and space-like for the hyperbolic elements in SU(1,1). The details of the procedure for the principal series of representations of SU(1,1) differ substantially from those of the discrete series.Comment: 31 pages, RevTeX, typos corrected. To be published in Journal of Mathematical Physic

    The instability of intersecting fuzzy spheres

    Get PDF
    We discuss the classical and quantum stability of general configurations representing many fuzzy spheres in dimensionally reduced Yang-Mills-Chern-Simons models with and without supersymmetry. By performing one-loop perturbative calculations around such configurations, we find that intersecting fuzzy spheres are classically unstable in the class of models studied in this paper. We also discuss the large-N limit of the one-loop effective action as a function of the distance of fuzzy spheres. This shows, in particular, that concentric fuzzy spheres with different radii, which are identified with the 't Hooft-Polyakov monopoles, are perturbatively stable in the bosonic model and in the D=10 supersymmetric model.Comment: 13 pages, (v3) reference added and some arguments refine

    Dynamical aspects of the fuzzy CP2^{2} in the large NN reduced model with a cubic term

    Full text link
    ``Fuzzy CP^2'', which is a four-dimensional fuzzy manifold extension of the well-known fuzzy analogous to the fuzzy 2-sphere (S^2), appears as a classical solution in the dimensionally reduced 8d Yang-Mills model with a cubic term involving the structure constant of the SU(3) Lie algebra. Although the fuzzy S^2, which is also a classical solution of the same model, has actually smaller free energy than the fuzzy CP^2, Monte Carlo simulation shows that the fuzzy CP^2 is stable even nonperturbatively due to the suppression of tunneling effects at large N as far as the coefficient of the cubic term (α\alpha) is sufficiently large. As \alpha is decreased, both the fuzzy CP2^2 and the fuzzy S^2 collapse to a solid ball and the system is essentially described by the pure Yang-Mills model (\alpha = 0). The corresponding transitions are of first order and the critical points can be understood analytically. The gauge group generated dynamically above the critical point turns out to be of rank one for both CP^2 and S^2 cases. Above the critical point, we also perform perturbative calculations for various quantities to all orders, taking advantage of the one-loop saturation of the effective action in the large-N limit. By extrapolating our Monte Carlo results to N=\infty, we find excellent agreement with the all order results.Comment: 27 pages, 7 figures, (v2) References added (v3) all order analyses added, some typos correcte

    Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term

    Full text link
    Fuzzy spheres appear as classical solutions in a matrix model obtained via dimensional reduction of 3-dimensional Yang-Mills theory with the Chern-Simons term. Well-defined perturbative expansion around these solutions can be formulated even for finite matrix size, and in the case of kk coincident fuzzy spheres it gives rise to a regularized U(kk) gauge theory on a noncommutative geometry. Here we study the matrix model nonperturbatively by Monte Carlo simulation. The system undergoes a first order phase transition as we change the coefficient (α\alpha) of the Chern-Simons term. In the small α\alpha phase, the large NN properties of the system are qualitatively the same as in the pure Yang-Mills model (α=0\alpha =0), whereas in the large α\alpha phase a single fuzzy sphere emerges dynamically. Various `multi fuzzy spheres' are observed as meta-stable states, and we argue in particular that the kk coincident fuzzy spheres cannot be realized as the true vacuum in this model even in the large NN limit. We also perform one-loop calculations of various observables for arbitrary kk including k=1k=1. Comparison with our Monte Carlo data suggests that higher order corrections are suppressed in the large NN limit.Comment: Latex 37 pages, 13 figures, discussion on instabilities refined, references added, typo corrected, the final version to appear in JHE
    corecore