15,414 research outputs found
GM crops and gender issues
Correspondence in the December issue by Jonathan Gressel not only states that gender issues in rural settings have not been adequately addressed with respect to weed control biotech but also asserts that such technology can increase the quality of life of rural women in developing countries. Improved weed control is a labor-saving technology that can result in less employment in a labor surplus rural economy. Often in rural areas, wage income is the main source of income and an important determinant of the quality of life, particularly where employment opportunities are generally limited. Apart from soil preparation, planting and weeding, harvesting is also 'femanual' work that can generate more employment if yields are higher. Biotech can enhance the quality of life of women but only if the technology is associated with overall generation of rural employment
Effect of oxygen concentration on the structural and magnetic properties of LaRh1/2Mn1/2O3 thin films
Epitaxial LaRh1/2Mn1/2O3 thin films have been grown on (001)-oriented LaAlO3
and SrTiO3 substrates using pulsed laser deposition. The optimized thin film
samples are semiconducting and ferromagnetic with a Curie temperature close to
100 K, a coercive field of 1200 Oe, and a saturation magnetization of 1.7muB
per formula unit. The surface texture, structural, electrical, and magnetic
properties of the LaRh1/2Mn1/2O3 films was examined as a function of the oxygen
concentration during deposition. While an elevated oxygen concentration yields
thin films with optimal magnetic properties, slightly lower oxygen
concentrations result in films with improved texture and crystallinity
Non-collinear Magnetic Order in the Double Perovskites: Double Exchange on a Geometrically Frustrated Lattice
Double perovskites of the form A_2BB'O_6 usually involve a transition metal
ion, B, with a large magnetic moment, and a non magnetic ion B'. While many
double perovskites are ferromagnetic, studies on the underlying model reveal
the possibility of antiferromagnetic phases as well driven by electron
delocalisation. In this paper we present a comprehensive study of the magnetic
ground state and T_c scales of the minimal double perovskite model in three
dimensions using a combination of spin-fermion Monte Carlo and variational
calculations. In contrast to two dimensions, where the effective magnetic
lattice is bipartite, three dimensions involves a geometrically frustrated face
centered cubic (FCC) lattice. This promotes non-collinear spiral states and
`flux' like phases in addition to collinear anti-ferromagnetic order. We map
out the possible magnetic phases for varying electron density, `level
separation' epsilon_B - epsilon_B', and the crucial B'-B' (next neighbour)
hopping t'.Comment: 15 pages pdflatex + 19 figs, revision: removed redundant comment
Dielectric and polarization experiments in high loss dielectrics: a word of caution
The recent quest for improved functional materials like high permittivity
dielectrics and/or multiferroics has triggered an intense wave of research.
Many materials have been checked for their dielectric permittivity or their
polarization state. In this report, we call for caution when samples are
simultaneously displaying insulating behavior and defect-related conductivity.
Many oxides containing mixed valent cations or oxygen vacancies fall in this
category. In such cases, most of standard experiments may result in effective
high dielectric permittivity which cannot be related to ferroelectric
polarization. Here we list few examples of possible discrepancies between
measured parameters and their expected microscopic origin
A Unified treatment of small and large- scale dynamos in helical turbulence
Helical turbulence is thought to provide the key to the generation of
large-scale magnetic fields. Turbulence also generically leads to rapidly
growing small-scale magnetic fields correlated on the turbulence scales. These
two processes are usually studied separately. We give here a unified treatment
of both processes, in the case of random fields, incorporating also a simple
model non-linear drift. In the process we uncover an interesting plausible
saturated state of the small-scale dynamo and a novel analogy between quantum
mechanical (QM) tunneling and the generation of large scale fields. The steady
state problem of the combined small/large scale dynamo, is mapped to a
zero-energy, QM potential problem; but a potential which, for non-zero mean
helicity, allows tunneling of bound states. A field generated by the
small-scale dynamo, can 'tunnel' to produce large-scale correlations, which in
steady state, correspond to a force-free 'mean' field.Comment: 4 pages, 1 figure, Physical Review Letters, in pres
Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime
The mechanisms of photon propagation in random media in the diffusive
multiple scattering regime have been previously studied using diffusion
approximation. However, similar understanding in the low-order (sub-diffusion)
scattering regime is not complete due to difficulties in tracking photons that
undergo very few scatterings events. Recent developments in low-coherence
enhanced backscattering (LEBS) overcome these difficulties and enable probing
photons that travel very short distances and undergo only a few scattering
events. In LEBS, enhanced backscattering is observed under illumination with
spatial coherence length L_sc less than the scattering mean free path l_s. In
order to understand the mechanisms of photon propagation in LEBS in the
subdiffusion regime, it is imperative to develop analytical and numerical
models that describe the statistical properties of photon trajectories. Here we
derive the probability distribution of penetration depth of LEBS photons and
report Monte Carlo numerical simulations to support our analytical results. Our
results demonstrate that, surprisingly, the transport of photons that undergo
low-order scattering events has only weak dependence on the optical properties
of the medium (l_s and anisotropy factor g) and strong dependence on the
spatial coherence length of illumination, L_sc, relative to those in the
diffusion regime. More importantly, these low order scattering photons
typically penetrate less than l_s into the medium due to low spatial coherence
length of illumination and their penetration depth is proportional to the
one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys.
Rev.
New beta-Pyrochlore Oxide Superconductor CsOs2O6
The discovery of a new beta-pyrochlore oxide superconductor CsOs2O6 with Tc =
3.3 K is reported. It is the third superconductor in the family of
beta-pyrochlore oxides, following KOs2O6 with Tc = 9.6 K and RbOs2O6 with Tc =
6.3 K. The Tc of this series decreases with increasing the ionic radius of
alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore
lattice.Comment: submitted to J. Phys. Soc Jp
- …
