10,053 research outputs found

    Evolving turbulence and magnetic fields in galaxy clusters

    Full text link
    We discuss, using simple analytical models and MHD simulations, the origin and parameters of turbulence and magnetic fields in galaxy clusters. Three physically distinct regimes can be identified in the evolution of cluster turbulence and magnetic fields. Firstly, the fluctuation dynamo will produce microgauss-strong, random magnetic fields during cluster formation and major mergers. Turbulent velocity of about 300 km/s can be maintained at scales 100-200 kpc. The magnetic field is intermittent, has a smaller scale of 20-30 kpc and average strength of 2 microgauss. Secondly, when major mergers end, turbulent speed and magnetic field undergo a power-law decay, decreasing in strength but increasing in scale by a factor of about two. Thirdly, smaller-mass subclusters and cluster galaxies produce turbulent wakes, with turbulent speeds and magnetic field strengths similar to those quoted above. The velocity scales are about 200 kpc and 10 kpc respectively, and the magnetic field scale is about 6 times smaller. Although these wakes may fill only a small fraction of the cluster volume, their area covering factor can be close to unity. So one can potentially reconcile observations that indicate the coexistence of turbulence with ordered filamentary gas structures, as in the Perseus cluster. Random Faraday rotation measure is estimated to be typically 100-200 rad/m^2, in agreement with observations. We predict detectable synchrotron polarization from cluster radio halos at wavelengths 3-6 cm, if observed at sufficiently high resolution (abridged).Comment: 20 pages, 9 figures, Replaced to match version accepted by MNRA

    Magnetic helicity in stellar dynamos: new numerical experiments

    Get PDF
    The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super-equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of alpha. For solar parameters, typical magnetic helicity fluxes lie around 10^{47} Mx^2 per cycle.Comment: 23 pages, 27 figures, Astron. Nach

    Frequency and time profiles of metric wave isolated Type I solar noise storm bursts at high spectral and temporal resolution

    Full text link
    Type I noise storms constitute a sizeable faction of the active-Sun radio emission component. Observations of isolated instances of such bursts, in the swept-frequency-mode at metric wavelengths, have remained sparse, with several unfilled regions in the frequency coverage. Dynamic spectra of the burst radiation, in the 30 - 130 MHz band, obtained from the recently commissioned digital High Resolution Spectrograph (HRS) at the Gauribidanur Radio Observatory, on account of the superior frequency and time resolution, have unravelled in explicit detail the temporal and spectral profiles of isolated bursts. Apart from presenting details on their fundamental emission features, the time and frequency profile symmetry, with reference to custom-specific Gaussian distributions, has been chosen as the nodal criterion to statistically explain the state of the source regions in the vicinity of magnetic reconnections, the latent excitation agent that contributes to plasma wave energetics, and the quenching phenomenon that causes damping of the burst emission.Comment: 9 pages 7 black and white / grey-scale figures (inclusive of 3 composite). MNRAS - accepte

    Non-collinear Magnetic Order in the Double Perovskites: Double Exchange on a Geometrically Frustrated Lattice

    Full text link
    Double perovskites of the form A_2BB'O_6 usually involve a transition metal ion, B, with a large magnetic moment, and a non magnetic ion B'. While many double perovskites are ferromagnetic, studies on the underlying model reveal the possibility of antiferromagnetic phases as well driven by electron delocalisation. In this paper we present a comprehensive study of the magnetic ground state and T_c scales of the minimal double perovskite model in three dimensions using a combination of spin-fermion Monte Carlo and variational calculations. In contrast to two dimensions, where the effective magnetic lattice is bipartite, three dimensions involves a geometrically frustrated face centered cubic (FCC) lattice. This promotes non-collinear spiral states and `flux' like phases in addition to collinear anti-ferromagnetic order. We map out the possible magnetic phases for varying electron density, `level separation' epsilon_B - epsilon_B', and the crucial B'-B' (next neighbour) hopping t'.Comment: 15 pages pdflatex + 19 figs, revision: removed redundant comment

    A Unified treatment of small and large- scale dynamos in helical turbulence

    Get PDF
    Helical turbulence is thought to provide the key to the generation of large-scale magnetic fields. Turbulence also generically leads to rapidly growing small-scale magnetic fields correlated on the turbulence scales. These two processes are usually studied separately. We give here a unified treatment of both processes, in the case of random fields, incorporating also a simple model non-linear drift. In the process we uncover an interesting plausible saturated state of the small-scale dynamo and a novel analogy between quantum mechanical (QM) tunneling and the generation of large scale fields. The steady state problem of the combined small/large scale dynamo, is mapped to a zero-energy, QM potential problem; but a potential which, for non-zero mean helicity, allows tunneling of bound states. A field generated by the small-scale dynamo, can 'tunnel' to produce large-scale correlations, which in steady state, correspond to a force-free 'mean' field.Comment: 4 pages, 1 figure, Physical Review Letters, in pres

    The effect of ambient conditions on carbon monoxide emissions from an idling gas turbine combustor

    Get PDF
    A test program employing a gas turbine combustor is outlined; the results of which quantize the effects of changes in ambient temperature and humidity on carbon monoxide emissions at simulated idle operating conditions. A comparison of the experimental results with analytical results generated by a kinetic model of the combustion process, and reflecting changing ambient conditions, is given. It is demonstrated that for a complete range of possible ambient variations, significant changes do occur in the amount of carbon monoxide emitted by a gas turbine at idle, and that the analytical model is reasonably successful in predicting changes
    • …
    corecore