17,296 research outputs found
GM crops and gender issues
Correspondence in the December issue by Jonathan Gressel not only states that gender issues in rural settings have not been adequately addressed with respect to weed control biotech but also asserts that such technology can increase the quality of life of rural women in developing countries. Improved weed control is a labor-saving technology that can result in less employment in a labor surplus rural economy. Often in rural areas, wage income is the main source of income and an important determinant of the quality of life, particularly where employment opportunities are generally limited. Apart from soil preparation, planting and weeding, harvesting is also 'femanual' work that can generate more employment if yields are higher. Biotech can enhance the quality of life of women but only if the technology is associated with overall generation of rural employment
The structure of dark matter halos in hierarchical clustering theories
During hierarchical clustering, smaller masses generally collapse earlier
than larger masses and so are denser on the average. The core of a small mass
halo could be dense enough to resist disruption and survive undigested, when it
is incorporated into a bigger object. We explore the possibility that a nested
sequence of undigested cores in the center of the halo, which have survived the
hierarchical, inhomogeneous collapse to form larger and larger objects,
determines the halo structure in the inner regions. For a flat universe with
, scaling arguments then suggest that the core density
profile is, with . But
whether such behaviour obtains depends on detailed dynamics. We first examine
the dynamics using a fluid approach to the self-similar collapse solutions for
the dark matter phase space density, including the effect of velocity
dispersions. We highlight the importance of tangential velocity dispersions to
obtain density profiles shallower than in the core regions. If
tangential velocity dispersions in the core are constrained to be less than the
radial dispersion, a cuspy core density profile shallower than 1/r cannot
obtain, in self-similar collapse. We then briefly look at the profiles of the
outer halos in low density cosmological models where the total halo mass is
convergent. Finally, we analyze a suite of dark halo density and velocity
dispersion profiles obtained in cosmological N-body simulations of models with
n= 0, -1 and -2. We find that the core-density profiles of dark halos, show
considerable scatter in their properties, but nevertheless do appear to reflect
a memory of the initial power spectrum, with steeper initial spectra producing
flatter core profiles. (Abridged)Comment: 31 pages, 7 figures, submitted to Ap
Interaction effects in thermocapillary bubble migration
Two bubbles migrating along their line of centers under the influence of an imposed thermal gradient are considered in the quasi-static limit. Results are reported for representative values of the governing parameters
Generic estimates for magnetic fields generated during inflation including Dirac-Born-Infeld theories
We estimate the strength of large-scale magnetic fields produced during
inflation in the framework of Dirac-Born-Infeld (DBI) theories. This analysis
is sufficiently general in the sense that it covers most of conformal symmetry
breaking theories in which the electromagnetic field is coupled to a scalar
field. In DBI theories there is an additional factor associated with the speed
of sound, which allows a possibility to lead to an extra amplification of the
magnetic field in a ultra-relativistic region. We clarify the conditions under
which seed magnetic fields to feed the galactic dynamo mechanism at a
decoupling epoch as well as present magnetic fields on galactic scales are
sufficiently generated to satisfy observational bounds.Comment: 7 pages, no figure, accepted in Phys. Rev.
Non-collinear Magnetic Order in the Double Perovskites: Double Exchange on a Geometrically Frustrated Lattice
Double perovskites of the form A_2BB'O_6 usually involve a transition metal
ion, B, with a large magnetic moment, and a non magnetic ion B'. While many
double perovskites are ferromagnetic, studies on the underlying model reveal
the possibility of antiferromagnetic phases as well driven by electron
delocalisation. In this paper we present a comprehensive study of the magnetic
ground state and T_c scales of the minimal double perovskite model in three
dimensions using a combination of spin-fermion Monte Carlo and variational
calculations. In contrast to two dimensions, where the effective magnetic
lattice is bipartite, three dimensions involves a geometrically frustrated face
centered cubic (FCC) lattice. This promotes non-collinear spiral states and
`flux' like phases in addition to collinear anti-ferromagnetic order. We map
out the possible magnetic phases for varying electron density, `level
separation' epsilon_B - epsilon_B', and the crucial B'-B' (next neighbour)
hopping t'.Comment: 15 pages pdflatex + 19 figs, revision: removed redundant comment
- …