64 research outputs found
Social inequalities, residential greenness and common mental disorders in women: evidence from the Born in Bradford family cohort study
Background: Green space may promote mental health in vulnerable groups but evidence is mixed. We explored prevalence of Common Mental Disorders (CMD) and associations with green space in a deprived urban multi-ethnic population. Methods: We included 4737 women from the Born in Bradford cohort (64% South Asian origin, 49% most deprived population decile). Green space was measured using the normalised difference vegetation index (NDVI) around home addresses and availabiltiy of major green spaces within 300 m. CMD were identified from health records (diagnosis and prescriptions) and self-reported anxiety and depression symptoms. Area deprivation, ethnicity, education, physical activity, use, and satisfaction with green spaces were collected. Linear and logistic regression models explored the distribution of CMD and residential greenness for different socio-economic groups and associations between greenness metrics and CMD. Mediators (physical activity) and moderators (green space use and satisfaction) were explored. Findings: Thirty percent of participants showed at least one CMD indicator. White British and the least and most educated groups had higher CMD rates. South Asian and Black ethnic groups had less surrounding greenness and greater availability of major green spaces; however used them less frequently. No relationships between green space and CMD were apparent. For those unsatisfied with their local park, living within 300 m of a major green space increased risk of anxiety symptoms, but not other CMD indicators. Interpretation: Availability of quality green spaces alone may not be enough to confer health benefits for populations experiencing high rates of CMD and multiple environmental and social stressors
Physical activity, sedentary behaviour, and childhood asthma: a European collaborative analysis
OBJECTIVES: To investigate the associations of physical activity (PA) and sedentary behaviour in early childhood with asthma and reduced lung function in later childhood within a large collaborative study. DESIGN: Pooling of longitudinal data from collaborating birth cohorts using meta-analysis of separate cohort-specific estimates and analysis of individual participant data of all cohorts combined. SETTING: Children aged 0-18 years from 26 European birth cohorts. PARTICIPANTS: 136 071 individual children from 26 cohorts, with information on PA and/or sedentary behaviour in early childhood and asthma assessment in later childhood. MAIN OUTCOME MEASURE: Questionnaire-based current asthma and lung function measured by spirometry (forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity) at age 6-18 years. RESULTS: Questionnaire-based and accelerometry-based PA and sedentary behaviour at age 3-5 years was not associated with asthma at age 6-18 years (PA in hours/day adjusted OR 1.01, 95% CI 0.98 to 1.04; sedentary behaviour in hours/day adjusted OR 1.03, 95% CI 0.99 to 1.07). PA was not associated with lung function at any age. Analyses of sedentary behaviour and lung function showed inconsistent results. CONCLUSIONS: Reduced PA and increased sedentary behaviour before 6 years of age were not associated with the presence of asthma later in childhood. © Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.The authors received no specific funding for this article. Funding information per cohort: ABCD: The ABCD study has been supported by grants from The Netherlands Organisation for Health Research and Development (ZonMW) and The Netherlands Heart Foundation. ABIS: Special thanks to the participating families in the ABIS study, and all staff at Obstetric departments and Well-Baby Clinics. ABIS has been supported by Swedish Research Council (K2005-72X-11242-11A and K2008-69X-20826-01-4) and the Swedish Child Diabetes Foundation (Barndiabetesfonden), JDRF Wallenberg Foundation (K 98-99D-12813-01A), Medical Research Council of Southeast Sweden (FORSS), and the Swedish Council for Working Life and Social Research (FAS2004-1775) and Östgöta Brandstodsbolag. BAMSE: This BAMSE birth cohort was supported by grants from the Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, Formas, the Swedish Heart-Lung Foundation, the Swedish Asthma and Allergy Research Foundation, Region Stockholm (ALF project, and for cohort and database maintenance), and the European Research Council (TRIBAL, grant agreement 757919). CHOP: The CHOP study reported herein have been carried out with partial financial support from the Commission of the European Community, specific RTD Programme 'Quality of Life and Management of Living Resources', within the European Union's Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition under grant agreement no. 289346, partial financial support from Polish Ministry of Science and Higher Education (2571/7.PR/2012/2), the EU H2020 project PHC-2014-DynaHealth under grant no. 633595 and the European Research Council Advanced Grant META-GROWTH (ERC-2012-AdG-no.322605). COPSAC2000: All funding received by COPSAC is listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B) and The Capital Region Research Foundation have provided core support to the COPSAC research center. DNBC: The Danish National Birth Cohort was established with a significant grant from the Danish National Research Foundation. Additional support was obtained from the Danish Regional Committees, the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Health Foundation and other minor grants. The DNBC Biobank has been supported by the Novo Nordisk Foundation and the Lundbeck Foundation. EDEN: EU FP7 Framework MedAll project, National Institute for Research in Public Health (IRESP TGIR Cohorte Santé 2008 Program); National Agency for Research (ANR non-thematic programme); French Speaking Association for the Study of Diabetes and Metabolism (Alfediam); Mutuelle Générale de l’Éducation Nationale; Nestlé; French National Institute for Health Education (INPES); Paris‐Sud University; French National Istitute for Population Health Surveillance (InVS); French Agency for Environment Security (AFFSET); French Ministry of Health Perinatal Program; Inserm Nutrition Research Program; Institut Fédératif de Recherche and Cohort Program; French Ministry of Research; EURIP and FIRE doctoral school–Programme Bettencourt; Fondation pour la Recherche Médicale (FRM). G21: Generation XXI was supported by the European Regional Development Fund (ERDF) through the Operational Programme Competitiveness and Internationalisation and national funding from the Foundation for Science and Technology (FCT), Portuguese Ministry of Science, Technology and Higher Education under the project 'HIneC: When do health inequalities start? Understanding the impact of childhood social adversity on health trajectories from birth to early adolescence' (POCI-01-0145-FEDER-029567; Reference PTDC/SAU-PUB/29567/2017). It is also supported by the Unidade de Investigação em Epidemiologia–Instituto de Saúde Pública da Universidade do Porto (EPIUnit) (UIDB/04750/2020), Administração Regional de Saúde Norte (Regional Department of Ministry of Health) and Fundação Calouste Gulbenkian; PhD Grant SFRH/BD/108742/2015 (to SS) co-funded by FCT and the Human Capital Operational Programme (POCH/FSE Program); ACS is founded by a FCT Investigator contracts IF/01060/2015. Generation R: The Generation R Study is made possible by financial support from the Erasmus Medical Centre, Rotterdam, the Erasmus University Rotterdam and The Netherlands Organization for Health Research and Development. The project received funding for projects from the European Union's Horizon 2020 research and innovation programme (LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583). LD received funding from the European Union's Horizon 2020 cofunded programme ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL) (ALPHABET project (no 696295; 2017), ZonMW The Netherlands (no 529051014; 2017)). GINIplus: The GINIplus study was mainly supported for the first 3 years of the Federal Ministry for Education, Science, Research and Technology (interventional arm) and Helmholtz Zentrum Munich (former GSF) (observational arm). The 4 years, 6 years, 10 years and 15 years follow-up examinations of the GINIplus study were covered from the respective budgets of the five study centres (Helmholtz Zentrum Munich (former GSF), Research Institute at Marien-Hospital Wesel, LMU Munich, TU Munich and from 6 years onwards also from IUF - Leibniz Research-Institute for Environmental Medicine at the University of Düsseldorf) and a grant from the Federal Ministry for Environment (IUF Düsseldorf, FKZ 20462296). Further, the 15-year follow-up examination of the GINIplus study was supported by the Commission of the European Communities, the 7th Framework Program: MeDALL project, and as well by the companies Mead Johnson and Nestlé. The authors thank all the families for their participation in the GINIplus study. Furthermore, we thank all members of the GINIplus Study Group for their excellent work. The GINIplus Study group consists of the following: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg (Heinrich J, Brüske I, Schulz H, Flexeder C, Zeller C, Standl M, Schnappinger M, Ferland M, Thiering E, Tiesler C); Department of Pediatrics, Marien-Hospital, Wesel (Berdel D, von Berg A); Ludwig-Maximilians-University of Munich, Dr von Hauner Children’s Hospital (Koletzko S); Child and Adolescent Medicine, University Hospital rechts der Isar of the Technical University Munich (Bauer CP, Hoffmann U); IUF- Environmental Health Research Institute, Düsseldorf (Schikowski T, Link E, Klümper C, Krämer U, Sugiri D). HUMIS: HUMIS is supported by the Research Council of Norway (NevroNor, grant number 226402). INMA Asturias: This study was funded by grants from, FIS-FEDER: PI04/2018, PI09/02311, PI13/02429, PI18/00909; Obra Social Cajastur/Fundación Liberbank, and Universidad de Oviedo. We thank Fundación NOE Alimerka. INMA Gipuzkoa: This study was funded by grants from Instituto de Salud Carlos III (FIS-PI06/0867, FIS-PI09/00090, FIS-PI13/02187 include FEDER funds), CIBERESP, Department of Health of the Basque Government (2005111093, 2009111069, 2013111089 and 2015111065), and the Provincial Government of Gipuzkoa (DFG06/002, DFG08/001 and DFG15/221) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain). INMA Menorca: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; 97/0588; 00/0021-2; PI061756; PS0901958; PI14/00677 incl. FEDER funds), CIBERESP, Beca de la IV convocatoria de Ayudas a la Investigación en Enfermedades Neurodegenerativas de La Caixa, and EC Contract No. QLK4-CT-2000-00263. INMA Sabadell: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; CPII/00018), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR 2009 SGR 501, Fundació La marató de TV3 (090430), EU Commission (261357). ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. INMA Valencia: This study was funded by grants from UE (FP7-ENV-2011 cod 282957 and HEALTH.2010.2.4.5-1), Spain: ISCIII (Red INMA G03/176, CB06/02/0041; FIS-FEDER: PI03/1615, PI04/1509, PI04/1112, PI04/1931, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI17/00663, and 19/1338; Miguel Servet-FEDER CP11/00178, CP15/00025 and CPII16/00051), Generalitat Valenciana: FISABIO (UGP 15-230, UGP-15-244, UGP-15-249, and AICO 2020/285), and Alicia Koplowitz Foundation 2017. KOALA: The KOALA cohort study was cofinanced by Friesland Foods (now FrieslandCampina), Netherlands Asthma Foundation (grant numbers 3.2.07.022 and 3.2.03.48) and Netherlands Heart Foundation (grant number 2014 T037), the Netherlands Organization for Health Research and Development (ZonMw Prevention Program number 1.210-00-090). The funding sources had no role in the study design and the collection, analysis and interpretation of data and the writing of the article and the decision to submit it for publication. Lifeways: The Lifeways study has been funded by the Health Research Board, Ireland, and the Irish Department of Health and Children’s Health Promotion Policy Unit. LISA: The LISA study was mainly supported by grants from the Federal Ministry for Education, Science, Research and Technology and in addition from Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Research Institute at Marien-Hospital Wesel, Pediatric Practice, Bad Honnef for the first 2 years. The 4 years, 6 years, 10 years and 15 years follow-up examinations of the LISA study were covered from the respective budgets of the involved partners (Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Research Institute at Marien-Hospital Wesel, Pediatric Practice, Bad Honnef, IUF—Leibniz-Research Institute for Environmental Medicine at the University of Düsseldorf) and in addition by a grant from the Federal Ministry for Environment (IUF Düsseldorf, FKZ 20462296). Further, the 15-year follow-up examination of the LISA study was supported by the Commission of the European Communities, the 7th Framework Program: MeDALL project. The authors thank all the families for their participation in the LISA study. Furthermore, we thank all members of the LISA Study Group for their excellent work. The LISA Study group consists of the following: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Munich (Heinrich J, Schnappinger M, Brüske I, Ferland M, Schulz H, Zeller C, Standl M, Thiering E, Tiesler C, Flexeder C); Department of Pediatrics, Municipal Hospital 'St. Georg', Leipzig (Borte M, Diez U, Dorn C, Braun E); Marien Hospital Wesel, Department of Pediatrics, Wesel (von Berg A, Berdel D, Stiers G, Maas B); Pediatric Practice, Bad Honnef (Schaaf B); Helmholtz Centre of Environmental Research—UFZ, Department of Environmental Immunology/Core Facility Studies, Leipzig (Lehmann I, Bauer M, Röder S, Schilde M, Nowak M, Herberth G, Müller J); Technical University Munich, Department of Pediatrics, Munich (Hoffmann U, Paschke M, Marra S); Clinical Research Group Molecular Dermatology, Department of Dermatology and Allergy, Technische Universität München (TUM), Munich (Ollert M, J. Grosch). LRC: All phases of this study were supported by the Swiss National Science Foundation (grants: SNF 320030_182628, 32003B_162820, PDFMP3 137033, 32003B_162820, 32003B_144068, PZ00P3_147987) and Asthma UK 07/048. LUCKI: This study was supported by Maastricht University and the Public Health Service South Limburg. PIAMA: The Prevention and Incidence of Asthma and Mite Allergy Study has been funded by grants from the Netherlands Organization for Health Research and Development; the Netherlands Organization for Scientific Research; the Lung Foundation of the Netherlands; the Netherlands Ministry of Planning, Housing and the Environment; the Netherlands Ministry of Health, Welfare and Sport; and the National Institute for Public Health and the Environment. SEATON: Medical Research Council, Grant number: 80219, MR/K001035/1; Asthma UK, Grant numbers: 00/011, 02/017. STEPS Study: The Academy of Finland (grant no. 123571 and 121659); the Juho Vainio Foundation; the Foundation for Pediatric Research; the Finnish Medical Foundation. SWS: The SWS was supported by grants from the Medical Research Council (MC_UU_12011/4), Dunhill Medical Trust, British Heart Foundation, Food Standards Agency (contract no N05071), British Lung Foundation. National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, the European Union’s Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition (grant 289346) and European Union’s Horizon 2020 research and innovation programme under grant agreement No 733206 (LifeCycle). WHISTLER: The authors (from the WHISTLER birth cohort) received no specific funding for this article. The WHISTLER birth cohort was supported with a grant from the Netherlands Organization for Health Research and Development (grant no. 2001-1-1322) and by an unrestricted grant from GlaxoSmithKline Netherlands
From trained immunity in allergy to trained immunity-based allergen vaccines.
Innate immune cells experience long lasting metabolic and epigenetic changes after an encounter with specific stimuli. This facilitates enhanced immune responses upon secondary exposition to both the same and unrelated pathogens, a process termed trained immunity. Trained immunity-based vaccines (TIbV) are vaccines able to induce innate immune memory, thus conferring heterologous protection against a broad range of pathogens. While trained immunity has been well documented in the context of infections and multiple immune-mediated diseases, the role of innate immune memory and its contribution to the initiation and maintenance of chronic allergic diseases remains poorly understood. Over the last years, different studies attempting to uncover the role of trained immunity in allergy have emerged. Exposition to environmental factors impacting allergy development such as allergens or viruses induces the reprogramming of innate immune cells to acquire a more pro-inflammatory phenotype in the context of asthma or food allergy. Several studies have convincingly demonstrated that prevention of viral infections using TIbV contributes to reduce wheezing attacks in children, which represent a high-risk factor for asthma development later in life. Innate immune cells trained with specific stimuli might also acquire anti-inflammatory features and promote tolerance, which may have important implications for chronic inflammatory diseases such as allergies. Recent findings showed that allergoid-mannan conjugates, which are next generation vaccines for allergen-specific immunotherapy (AIT), are able to reprogram monocytes into tolerogenic dendritic cells by mechanisms depending on metabolic and epigenetic rewiring. A better understanding of the underlying mechanisms of trained immunity in allergy will pave the way for the design of novel trained immunity-based allergen vaccines as potential alternative strategies for the prevention and treatment of allergic diseases
- …