16 research outputs found

    All-Printed Multilayers and Blends of Poly(dioxythiophene) Derivatives Patterned into Flexible Electrochromic Displays

    Get PDF
    Low-cost, flexible and thin display technology is becoming an interesting field of research as it can accompany the wide range of sensors being developed. Here, the synthesis of poly(dimethylpropylene-dioxythiophene) (PProDOT-Me-2) by combining vapor phase polymerization and screen printing is presented. A multilayer architecture using poly(3,4-ethylenedioxythiophene) (PEDOT) and PProDOT-Me-2 to allow for electrochromic switching of PProDOT-Me-2, thereby eliminating the need for a supporting transparent conductive (metal oxide) layer is introduced. Furthermore, the technology is adapted to a blended architecture, which removes the additional processing steps and results in improved color contrast ( increment E* > 25). This blend architecture is extended to other conductive polymers, such as PEDOT and polypyrrole (PPy), to highlight the ability of the technique to adjust the color of all-printed electrochromic displays. As a result, a green color is obtained when combining the blue and yellow states of PEDOT and PPy, respectively. This technology has the potential to pave the way for all-printed multicolored electrochromic displays for further utilization in printed electronic systems in various Internet of Things applications

    The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    Get PDF
    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment may under certain conditions influences the structure of the interface between the two subsequent layers and thus the barrier properties of the whole system. We focus our attention on the effect of plasma treatment time on the final barrier properties. We assess the encapsulation barrier properties of these layers, using the calcium degradation test where changes in the electrical conductance of encapsulated Ca sensors are monitored with time. The water vapor transmission rate (WVTR) is found to be ~3 × 10−3 g/m2·day for stacked SiNx double-layer with 8 min Ar plasma surface treatment.FCT - CNRS PICS (French–Portuguese no: 5336) projectDirection des Relations Extérieures, Ecole Polytechniqu

    Influence of low energy argon plasma treatment on the moisture barrier performance of hot wire-CVD grown SiNx multilayers

    Get PDF
    The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 x 10-4 g/(m2 day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.Direction des Relations Extérieures, Ecole PolytechniquePICS (French–Portuguese No. 5336) projec

    Flexible organic–inorganic hybrid layer encapsulation for organic opto-electronic devices

    Get PDF
    In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.The authors would like to thank Dr. J.C. Vanel for help in electrical characterizations used in this study. The first author (S.M) acknowledges the financial support from Direction des Relations Extérieures, Ecole Polytechnique during his thesis

    Flexible organic-inorganic hybrid layer encapsulation for organic opto- electronic devices

    Get PDF
    Abstract In this work we produce and study the flexible organic-inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiN x :H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic-inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10 −5 g/m 2 day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications

    Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization

    Get PDF
    We report room-temperature Hall mobility measurements, low-temperature magnetoresistance analysis, and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 ◦C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω/sq after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm−3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V−1 s−1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1 – 1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play
    corecore