25 research outputs found

    Is entanglement a probe of confinement?

    Get PDF
    We study various entanglement measures in a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons field theories by means of their dual supergravity descriptions. A generic field theory in this family possesses a mass gap but does not have a linear quark-antiquark potential. For the two limiting values of the parameter, the theories flow either to a fixed point or to a confining vacuum in the infrared. We show that entanglement measures are unable to discriminate confining theories from non-confining ones with a mass gap. This lends support on the idea that the phase transition of entanglement entropy at large-N can be caused just by the presence of a sizable scale in a theory and just by itself should not be taken as a signal of confinement. We also examine flows passing close to a fixed point at intermediate energy scales and find that the holographic entanglement entropy, the mutual information, and the F-functions for strips and disks quantitatively match the conformal values for a range of energies.Peer reviewe

    Is entanglement a probe of confinement?

    Get PDF
    We study various entanglement measures in a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons field theories by means of their dual supergravity descriptions. A generic field theory in this family possesses a mass gap but does not have a linear quark-antiquark potential. For the two limiting values of the parameter, the theories flow either to a fixed point or to a confining vacuum in the infrared. We show that entanglement measures are unable to discriminate confining theories from non-confining ones with a mass gap. This lends support on the idea that the phase transition of entanglement entropy at large-N can be caused just by the presence of a sizable scale in a theory and just by itself should not be taken as a signal of confinement. We also examine flows passing close to a fixed point at intermediate energy scales and find that the holographic entanglement entropy, the mutual information, and the F-functions for strips and disks quantitatively match the conformal values for a range of energies.Peer reviewe

    Limitations of entanglement entropy in detecting thermal phase transitions

    Full text link
    We explore the efficacy of entanglement entropy as a tool for detecting thermal phase transitions in a family of gauge theories described holographically. The rich phase diagram of these theories encompasses first and second-order phase transitions, as well as a critical and a triple point. While entanglement measures demonstrate some success in probing transitions between plasma phases, they prove inadequate when applied to phase transitions leading to gapped phases. Nonetheless, entanglement measures excel in accurately determining the critical exponent associated with the observed phase transitions, providing valuable insight into the critical behavior of these systems.Comment: 25 pages + appendices, 11 figures. v2: typos corrected and references adde

    Monopoles and confinement in three dimensions from holography

    Full text link
    We study the phase diagram of a confining three-dimensional N=1\mathcal{N}=1 supersymmetric U(N)Ă—U(N+M)\text{U}(N)\times\text{U}(N+M) theory with holographic dual corresponding to a known string theory solution. The theory possesses a global U(1)\text{U}(1) symmetry under which magnetic monopoles are charged. We introduce both temperature and an external magnetic field for monopoles and find that there are deconfinement phase transitions as any of the two is increased, supporting monopole condensation as the possible mechanism for confinement. We find that the transition as the magnetic field is increased is second order, providing the first example in holographic duals of a deconfinement transition which is not first order. We also uncover a rich structure in the phase diagram, with a triple point and a critical point where a line of first order transitions end.Comment: 27 pages + appendices, 11 figures. Expansions available at https://subils.me/resources/poliakov-confinement-at-strong-coupling

    Magara Sanar (site rupestre, Maroc)

    Get PDF
    La grotte de Magara Sanar se situe dans le Maroc nord-occidental, dans le Rif au cœur du jbel Kasba, secteur de la tribu des Beni-Issef. Très septentrional et isolé, ce site est connu pour avoir conservé des peintures rupestres (carte du Maroc au 100.000e Larache 7-8, c. L. 480,7 x 504,3). La découverte de Magara Sanar revient au commandant espagnol Eduardo García Hernández qui la publia en 1941, puis à l’archéologue Julio Martínez Santa-Olalla qui en fit une étude approfondie. En 1942, Pelay..

    Multiple Mass Hierarchies from Complex Fixed Point Collisions

    Full text link
    A pair of complex-conjugate fixed points that lie close to the real axis generates a large mass hierarchy in the real renormalization group flow that passes in between them. We show that pairs of complex fixed points that are close to the real axis and to one another generate multiple hierarchies, some of which can be parametrically enhanced. We illustrate this effect at weak coupling with field-theory examples, and at strong coupling using holography. We also construct complex flows between complex fixed points, including flows that violate the cc-theorem.Comment: 24 pages + appendices, 12 figure

    Phase transitions in a three-dimensional analogue of Klebanov-Strassler

    Get PDF
    We use top-down holography to study the thermodynamics of a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons theories with M-theory duals. For generic values of the parameter, the theories exhibit a mass gap but no confinement, meaning no linear quark-antiquark potential. For two specific values of the parameter they flow to an infrared fixed point or to a confining vacuum, respectively. As in the Klebanov-Strassler solution, on the gravity side the mass gap is generated by the smooth collapse to zero size of a cycle in the internal geometry. We uncover a rich phase diagram with thermal phase transitions of first and second order, a triple point and a critical point

    Holographic Complex Conformal Field Theories

    Get PDF
    The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points are close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points
    corecore