13 research outputs found

    Isolasi Senyawa Fenolat dari Fraksi Etil Asetat Kulit Batang Tumbuhan Gandaria

    Full text link
    Telah dilakukan isolasi senyawa fenolat dari fraksi etil asetat kulit batang tumbuhan Gandaria (Bouea macrophylla Griff). Ekstraksi dilakukan dengan metode maserasi dan pemisahan senyawa hasil isolasi dilakukan dengan teknik kromatografi. Hasil isolasi berupa kristal berwarna putih dengan titik leleh 185-187_C. Spektrum UV dalam pelarut etil asetat menunjukkan serapan maksimum pada 289 nm, mengindikasikan adanya ikatan rangkap terkonjugasi yang lazimnya merupakan cincin aromatis. Analisa spektrum IR menunjukkan adanya gugus −OH, C−H alifatik, C=O, C=C, C−H, C−O, C=C−H. Berdasarkan data-data spektrum UV, IR, serta berdasarkan uji fitokimia diduga senyawa hasil isolasi ini merupakan senyawa golongan fenolat yang tersubtitusi gugus alifatik dan gugus karbonil

    A Simian Virus 5 (SV5) P/V Mutant Is Less Cytopathic than Wild-Type SV5 in Human Dendritic Cells and Is a More Effective Activator of Dendritic Cell Maturation and Function

    No full text
    Human epithelial cells infected with the parainfluenza virus simian virus 5 (SV5) show minimal activation of host cell interferon (IFN), cytokine, and cell death pathways. In contrast, a recombinant SV5 P/V gene mutant (rSV5-P/V-CPI(−)) overexpresses viral gene products and is a potent inducer of IFN, proinflammatory cytokines, and apoptosis in these cells. In this study, we have compared the outcomes of wild-type (WT) SV5 and rSV5-P/V-CPI(−) infections of primary human dendritic cells (DC), important antigen-presenting cells for initiating adaptive immune responses. We have tested the hypothesis that a P/V mutant which activates host antiviral responses will be a more potent inducer of DC maturation and function than WT rSV5, which suppresses host cell responses. Infection of peripheral blood mononuclear cell-derived immature DC with WT rSV5 resulted in high levels of viral protein and progeny virus but very little increase in cell surface costimulatory molecules or secretion of IFN and proinflammatory cytokines. In contrast, immature DC infected with the rSV5-P/V-CPI(−) mutant produced only low levels of viral protein and progeny virus, but these infected cells were induced to secrete IFN-α and other cytokines and showed elevated levels of maturation markers. Unexpectedly, DC infected with WT rSV5 showed extensive cytopathic effects and increased levels of active caspase-3, while infection of DC with the P/V mutant was largely noncytopathic. In mixed-culture assays, WT rSV5-infected DC were impaired in the ability to stimulate proliferation of autologous CD4(+) T cells, whereas DC infected with the P/V mutant were very effective at activating T-cell proliferation. The addition of a pancaspase inhibitor to DC infected with WT rSV5 reduced cytopathic effects and resulted in higher surface expression levels of maturation markers. Our finding that the SV5 P/V mutant has both a reduced cytopathic effect in human DC compared to WT SV5 and an enhanced ability to induce DC function has implications for the rational design of novel recombinant paramyxovirus vectors based on engineered mutations in the viral P/V gene

    Altered Function in CD8(+) T Cells following Paramyxovirus Infection of the Respiratory Tract

    No full text
    For many respiratory pathogens, CD8(+) T cells have been shown to play a critical role in clearance. However, there are still many unanswered questions with regard to the factors that promote the most efficacious immune response and the potential for immunoregulation of effector cells at the local site of infection. We have used infection of the respiratory tract with the model paramyxovirus simian virus 5 (SV5) to study CD8(+) T-cell responses in the lung. For the present study, we report that over time a population of nonresponsive, virus-specific CD8(+) T cells emerged in the lung, culminating in a lack of function in ∼85% of cells specific for the immunodominant epitope from the viral matrix (M) protein by day 40 postinfection. Concurrent with the induction of nonresponsiveness, virus-specific cells that retained function at later times postinfection exhibited an increased requirement for CD8 engagement. This change was coupled with a nearly complete loss of functional phosphoprotein-specific cells, a response previously shown to be almost exclusively CD8 independent. These studies add to the growing evidence for immune dysregulation following viral infection of the respiratory tract

    Additional file 6: Figure S1. of Gene expression profiles associated with cigarette smoking and moist snuff consumption

    No full text
    Clustering of 120 subjects based on blood expression profiles which were significantly different by Âą1.25 fold between SMK and either MSC or NTC subjects. (A) Hierarchical clustering and heatmap representation of expression values for genes (rows) across 120 subjects (columns), where low expression is denoted by green and high expression by red. The expression of each gene was normalized across all samples. Subjects were categorized into SMK (blue), MSC (red), and NTC (green). (B) Principal Component Analysis. Subjects were projected according to the first three principal components. For additional details, see the caption for Fig. 3. (TIF 4567 kb

    Stimulation of Human Dendritic Cells by Wild-Type and M Protein Mutant Vesicular Stomatitis Viruses Engineered To Express Bacterial Flagellinâ–¿

    No full text
    Vesicular stomatitis viruses (VSVs) containing wild-type (wt) or mutant matrix (M) proteins are being developed as candidate vaccine vectors due to their ability to induce innate and adaptive immunity. Viruses with wt M protein, such as recombinant wild-type (rwt) virus, stimulate maturation of dendritic cells (DC) through Toll-like receptor 7 (TLR7) and its adaptor molecule MyD88. However, M protein mutant viruses, such as rM51R-M virus, stimulate both TLR7-positive and TLR7-negative DC subsets. The goal of this study was to determine whether the ability of rwt and rM51R-M viruses to induce maturation of human DC can be enhanced by engineering these vectors to express bacterial flagellin. Flagellin expressed from the rwt virus genome partially protected human DC from VSV-induced shutoff of host protein synthesis and promoted the production of interleukin 6 (IL-6) and IL-1β. In addition, DC infected with rwt virus expressing flagellin were more effective at stimulating gamma interferon (IFN-γ) production from CD8+ allogeneic T cells than DC infected with rwt virus. Although rM51R-M virus effectively stimulated human DC, flagellin expressed from the rM51R-M virus genome enhanced the production of cytokines. Furthermore, mice immunized with both rwt and rM51R-M viruses expressing flagellin had enhanced anti-VSV antibody responses in vivo. Therefore, rwt and rM51R-M viruses expressing flagellin may be promising vectors for the delivery of foreign antigen due to their potential to stimulate DC function
    corecore