29 research outputs found

    T Regulatory Cells: An Overview and Intervention Techniques to Modulate Allergy Outcome

    Get PDF
    Dysregulated immune response results in inflammatory symptoms in the respiratory mucosa leading to asthma and allergy in susceptible individuals. The T helper type 2 (Th2) subsets are primarily involved in this disease process. Nevertheless, there is growing evidence in support of T cells with regulatory potential that operates in non-allergic individuals. These regulatory T cells occur naturally are called natural T regulatory cells (nTregs) and express the transcription factor Foxp3. They are selected in the thymus and move to the periphery. The CD4 Th cells in the periphery can be induced to become regulatory T cells and hence called induced or adaptive T regulatory cells. These cells can make IL-10 or TGF-b or both, by which they attain most of their suppressive activity. This review gives an overview of the regulatory T cells, their role in allergic diseases and explores possible interventionist approaches to manipulate Tregs for achieving therapeutic goals

    T regulatory cells: an overview and intervention techniques to modulate allergy outcome

    Get PDF
    Dysregulated immune response results in inflammatory symptoms in the respiratory mucosa leading to asthma and allergy in susceptible individuals. The T helper type 2 (Th2) subsets are primarily involved in this disease process. Nevertheless, there is growing evidence in support of T cells with regulatory potential that operates in non-allergic individuals. These regulatory T cells occur naturally are called natural T regulatory cells (nTregs) and express the transcription factor Foxp3. They are selected in the thymus and move to the periphery. The CD4 Th cells in the periphery can be induced to become regulatory T cells and hence called induced or adaptive T regulatory cells. These cells can make IL-10 or TGF-b or both, by which they attain most of their suppressive activity. This review gives an overview of the regulatory T cells, their role in allergic diseases and explores possible interventionist approaches to manipulate Tregs for achieving therapeutic goals

    Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    Get PDF
    BACKGROUND: The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. METHODS AND PRINCIPAL FINDINGS: In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. CONCLUSION AND SIGNIFICANCE: Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis

    Heterologous CD8 T Cell Immune Response to HSV Induced by Toll Like Receptor Ligands

    No full text
    A memory response is established following primary antigen exposure that stays more or less constant. It appears to adopt a set-point in magnitude but upon re-exposure the response is quicker and better and there is an upward shift in memory frequency that varies with individuals based on the exposure pattern to other microbes or its components. Our investigations were designed to test such differences of non-specific stimulation by PAMPs in lowering the threshold of activation. Neonatal mice were pre-exposed to TLR-ligands intermittently and later analyzed for its resilience to challenge with virus during adult-life. Secondly, adult mice with pre-existing memory to virus were exposed to various TLR-ligands and analyzed for their quality of memory response. The TLR-ligands exposed animals were better responders to a new agent exposure compared to the animals kept in sterile surroundings. Moreover, immune memory recall and the viral specific CD8+ T cells response with TLR-ligands were comparable to the recall response with the cognate antigen. The results provide insights into the role of hyper-sanitized environment versus PAMPs mediated signaling in adaptive immunity and long-term immune memory

    Natural Killer Cells as Novel Helpers in Anti-Herpes Simplex Virus Immune Response▿

    No full text
    Innate defenses help to eliminate infection, but some of them also play a major role in shaping the magnitude and efficacy of the adaptive immune response. With regard to influencing subsequent adaptive immunity, NK cells aided by dendritic cells may be the most relevant components of the innate reaction to herpes simplex virus (HSV) infection. We confirm that mice lacking or depleted of NK cells are susceptible to HSV-induced lesions. The quantity and quality of CD8+ cytotoxic T lymphocytes generated in the absence of NK cells were diminished, thereby contributing to susceptibility to HSV-induced encephalitis. We demonstrate a novel helper role for NK cells, in that NK cells compensate for the loss of CD4 helper T cells and NK cell supplementation enhances the function of wild type anti-HSV CD8 T cells. In addition, NK cells were able to partially rescue the dysfunctional CD8+ T cells generated in the absence of CD4 T helper cells, thereby performing a novel rescue function. Hence, NK cells may well be exploited for enhancing and rescuing the T-cell response in situations where the CD4 helper response is affected

    Attrition of T-cell functions and simultaneous upregulation of inhibitory markers correspond with the waning of BCG-induced protection against tuberculosis in mice.

    No full text
    Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4(+) and CD8(+) T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4(+) and CD8(+) T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4(+) T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4(+) and CD8(+) T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis

    Pre-Term Exposure Patterns in Neonatal Intensive Care Unit Alters Immunological Outcome in Neonates

    No full text
    Advances in technology have lowered the limits of viability in premature births to 24 weeks of gestation. This brought forth a new population of children, who are born 3-4 months early and spent considerable amounts of time in neonatal intensive care unit (NICU), instead of sterile environment of mother’s womb. Besides, other problems associated with prematurity, these children often undergo invasive procedures resulting in mucosal inflammation and/ or injury by feeding tubes, endotracheal tubes, and prolonged IV catheter. To test whether “ex-preemie-infants” were different than “term-infants” with regard to their immunity, preterm infants (\u3c 32 weeks) and term infants (control) at the corrected age of 9-12 months were analyzed for their resting and stimulated immune responses. Preterm infants had a significant Th1 skewed response, higher number of activated and functionally competent T cells compared to term infants. The critical role of neonatal environmental exposure on immune system development is imminent; nevertheless detailed mechanistic studies on pathways are warranted

    Waning of BCG-induced protection against <i>Mtb</i> coincides with decreased T-cell functional capacity.

    No full text
    <p>(A–C) BCG-vaccinated or age-matched naïve mice were infected with <i>Mtb</i> Erdman, and 6 weeks later the spleen and lungs were isolated. (A) Differences in <i>Mtb</i> load between vaccinated and control mice are shown. The data are mean ± s.e.m. <i>Mtb</i> CFU in each organ at eight different time points involving two to four independent experiments each using five individually analyzed mice per time point. (*<i>P</i><0.05, ** <i>P</i><0.01, *** <i>P</i><0.001, compared to the corresponding age-matched naïve control by Kruskal-Wallis test followed by Dunn's post-test). (B) The longitudinal changes in the frequency of rESAT-6+rCFP-10-specific total CD4<sup>+</sup> cytokine<sup>+</sup> (of IFN-γ, IL-2 and TNF-α) T cells from the lung (upper panel) and spleen (lower panel) of vaccinated and naïve mice 6 weeks after challenge (*<i>P</i><0.05, ** <i>P</i><0.01 compared to the corresponding week 32 BCG-vaccinated mice by 1-way ANOVA and Tukey's post-test). At the 32-week time point, rESAT-6+rCFP-10-specific responses in naïve mice are statistically higher compared to the corresponding vaccinated groups (<i>P</i><0.05). (C) The magnitudes of WCL-specific total CD4<sup>+</sup> cytokine<sup>+</sup> T cells before and 6 weeks after <i>Mtb</i> challenge. The data are mean ± s.e.m. responses measured by intracellular cytokine staining (ICS) of four mice per time point. (*<i>P</i><0.05 comparing pre- and post-challenge WCL-specific responses using 1-way ANOVA and Tukey's post-test) (D) The schematic summary of longitudinal changes in BCG load in the lung and spleen of i.n. and s.c. BCG-vaccinated mice over a period of 2 years and its correlation with the magnitude and functional capacity of T cells and levels of protection against <i>Mtb</i> infection.</p
    corecore