272 research outputs found

    The Impact of Erratic Electricity supply on Irrigated Agriculture

    Get PDF
    Unscheduled power cuts reduced summer paddy yields in Aurepalle and Dokur in 1990 and 1992. Power cuts are the inevitable result of flat rate pricing schedules for agricultural electricity, but they are only a major problem when they are unscheduled and unpredictable. Unpredictability raises production costs and reduces crop yields. Farmers indicate that they are willing to pay more for better quality power delivery. The Andhra Pradesh State Electricity Board has limited options due to political pressure. If it cannot adopt pro rata pricing it must tighten existing rations; otherwise unscheduled cuts will become increasingly common

    Screening of recombinant inbred lines for resistance to bacterial leaf blight pathotypes in rice (Oryza sativa L.)

    Get PDF
    In the present investigation 16 recombinant inbred lines (RIL’s) developed from the intra-specific cross between YH3 and AKDRMS 21-54 through Marker Assisted Pedigree Breeding Method were screened along with their parents and the checks, namely, BPT 5204, TN1 and Improved Samba Mahsuri (ISM) against IxoPt-20 pathotype at the ICAR-Indian Institute of Rice Research, Hyderabad during Rabi 2021-22 and a new pathotype of Xanthomonas oryzae pv. oryzae causing Bacterial Leaf Blight disease in rice at Regional Agricultural Research Station, Maruteru during Kharif 2022 to identify pathotype specific resistant sources.  Morpho-Molecular screening was adopted to evaluate the recombinant inbred lines over two locations in the consecutive seasons of Rabi 2021-22 and Kharif 2022. Based on per cent diseased leaf area, the genotypes were scored and categorised as per the Standard Evaluation System (SES) scale provided by International Rice Research Institute (IRRI). The results revealed all 16 RIL’s to be either resistant (10) or moderately resistant (6) to IxoPt-20 pathotype. However, only five RIL’s were found to be resistant, while four RIL’s were moderately resistant for the new virulent pathotype. Seven RIL’s with resistant to moderately resistant reaction for IxoPt-20 pathotype, showed moderately susceptible reaction for the new virulent pathotype.  Among the resistant RIL’s identified for each pathotype, BPT-1901-72-10-6, BPT-1901-108-4-1 and BPT-1901-111-3-2 were found to be uniformly resistant, while, BPT-1901-45-8-6 and BPT-1901-163-1-18 were uniformly moderately resistant to both IXoPt-20 and the new virulent pathotype at Hyderabad and Maruteru, respectively, indicating their potential as genetic stocks for development of new cultivars resistant to bacterial leaf blight disease

    Biological nitrification inhibition (BNI) activity in sorghum: Potential role for enhancing nitrogen-use efficiency (NUE)

    Get PDF
    Nitrification and denitrification are the primary drivers for generating reactive -N (NO3-, N20 and NO) the two processes of N-cycle, largely responsible for soil-N losses, resulting poor N-recovery and low-NUE in agricultural systems. Suppressing soil nitrifier activity facilitates retention of soil mineral-N as ammoninum, leads to better utilization of N in situations where nitrification is followed by N losses via leaching and/or denitrification. Soils in the WCS (West Central Sahelian zone of Africa) where sorghum is predominantly grown, are of light-textured sandy-loams with acidic (ph 5.0 to 6.0). Alfisols in India and Ultisols in South America are also of light-textured and acidic, where most of the sorghum grown globally. Nitrogen mineralized from SOM (soil organic matter) or from inorganic fertilizers is quickly nutrified and lost through leaching

    Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field

    Full text link
    We studied the statistical methods for the estimation of the luminosity function (LF) of galaxies. We focused on four nonparametric estimators: 1/Vmax1/V_{\rm max} estimator, maximum-likelihood estimator of Efstathiou et al. (1988), Cho{\l}oniewski's estimator, and improved Lynden-Bell's estimator. The performance of the 1/Vmax1/V_{\rm max} estimator has been recently questioned, especially for the faint-end estimation of the LF. We improved these estimators for the studies of the distant Universe, and examined their performances for various classes of functional forms by Monte Carlo simulations. We also applied these estimation methods to the mock 2dF redshift survey catalog prepared by Cole et al. (1998). We found that 1/Vmax1/V_{\rm max} estimator yields a completely unbiased result if there is no inhomogeneity, but is not robust against clusters or voids. This is consistent with the well-known results, and we did not confirm the bias trend of 1/Vmax1/V_{\rm max} estimator claimed by Willmer (1997) in the case of homogeneous sample. We also found that the other three maximum-likelihood type estimators are quite robust and give consistent results with each other. In practice we recommend Cho{\l}oniewski's estimator for two reasons: 1. it simultaneously provides the shape and normalization of the LF; 2. it is the fastest among these four estimators, because of the algorithmic simplicity. Then, we analyzed the photometric redshift data of the Hubble Deep Field prepared by Fern\'{a}ndez-Soto et al. (1999) using the above four methods. We also derived luminosity density ρL\rho_{\rm L} at BB- and II-band. Our BB-band estimation is roughly consistent with that of Sawicki, Lin, & Yee (1997), but a few times lower at 2.0<z<3.02.0 < z < 3.0. The evolution of ρL(I)\rho_{\rm L}(I) is found to be less prominent.Comment: To appear in ApJS July 2000 issue. 36 page

    Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection

    Get PDF
    Bacterial blight (BB) is a major production threat to Basmati, the aromatic rice prized for its unique quality. In order to improve the BB resistance of two elite, traditional BB-susceptible Basmati varieties (Taraori Basmati and Basmati 386), we utilized the strategy of limited marker-assisted backcrossing for introgression of two major BB resistance genes, Xa21 and xa13, coupled with phenotype-based selection for improvement of their plant type and yield. Improved Samba Mahsuri, an elite high-yielding, fine-grain-type BB-resistant rice variety served as donor for BB resistance. Backcross-derived improved Basmati lines at BC1F5 possessing a single resistance gene (i.e. either Xa21 or xa13) displayed moderate resistance to BB, while lines possessing both Xa21 and xa13 showed significantly higher levels of resistance. Two-gene pyramid lines (Xa21 + xa13) possessing good grain and cooking quality similar to their respective traditional Basmati parents, short plant stature (<110 cm plant height) and higher grain yield than the recurrent parent(s) were identified and advanced. This work demonstrates the successful application of marker-assisted selection in conjunction with phenotype-based selection for targeted introgression of multiple resistance genes into traditional Basmati varieties along with improvement of their plant stature and yield

    The Luminosity Function of Galaxies in SDSS Commissioning Data

    Get PDF
    During commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest existing galaxy redshift samples selected from CCD images. Using 11,275 galaxies complete to r^* = 17.6 over 140 square degrees, we compute the luminosity function of galaxies in the r^* band over a range -23 < M < -16 (for h=1). The result is well-described by a Schechter function with parameters phi_* = 0.0146 +/- 0.0012 h^3 Mpc^{-3}, M_* = -20.83 +/- 0.03, and alpha = -1.20 +/- 0.03. The implied luminosity density in r^* is j = (2.6 +/- 0.3) x 10^8 h L_sun Mpc^{-3}. The surface brightness selection threshold has a negligible impact for M < -18. We measure the luminosity function in the u^*, g^*, i^*, and z^* bands as well; the slope at low luminosities ranges from alpha=-1.35 to alpha=-1.2. We measure the bivariate distribution of r^* luminosity with half-light surface brightness, intrinsic color, and morphology. High surface brightness, red, highly concentrated galaxies are on average more luminous than low surface brightness, blue, less concentrated galaxies. If we synthesize results for R-band or b_j-band using the Petrosian magnitudes with which the SDSS measures galaxy fluxes, we obtain luminosity densities 2.0 times that found by the Las Campanas Redshift Survey in R and 1.4 times that found by the Two-degree Field Galaxy Redshift Survey in b_j. We are able to reproduce the luminosity functions obtained by these surveys if we also mimic their isophotal limits for defining galaxy magnitudes, which are shallower and more redshift dependent than the Petrosian magnitudes used by the SDSS. (Abridged)Comment: 49 pages, including 23 figures, accepted by AJ; some minor textual changes, plus an important change in comparison to LCR

    The influence of phytoplankton composition on the relative effectiveness of grinding and sonification for chlorophyll extraction

    Full text link
    The chlorophyll recovery efficiency was compared between control, ground, and sonified samples. The results showed significant improvement between control and ground samples but not between control and sonified samples. Neither prolonging time of sonification nor using an ice bath during filter grinding improved efficiency. Higher chlorophyll a recovery was obtained from ground samples than from sonified ones, when the water samples contained centric diatoms and filamentous blue-green algae. When total phytoplankton numbers were high, there was a distinct advantage in using grinding rather than sonification for chlorophyll c recovery.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42913/1/10750_2004_Article_BF00008504.pd

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
    corecore