122 research outputs found

    The Solar Neighborhood XXV: Discovery of New Proper Motion Stars with 0.40 "/yr > mu > 0.18 "/yr between Declinations -47 degrees and 00 degrees

    Full text link
    We present 2817 new southern proper motion systems with 0.40 "/yr > mu > 0.18 "/yr and declination between -47 degrees and 00 degrees. This is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky. We use the same photometric relations as previous searches to provide distance estimates based on the assumption that the objects are single main sequence stars. We find 79 new red dwarf systems predicted to be within 25 pc, including a few new components of previously known systems. Two systems - SCR 1731-2452 at 9.5 pc and SCR 1746-3214 at 9.9 pc - are anticipated to be within 10 pc. We also find 23 new white dwarf candidates with distance estimates of 15-66 pc, as well as 360 new red subdwarf candidates. With this search, we complete the SCR sweep of the southern sky for stars with mu > 0.18 "/yr and R_59F < 16.5, resulting in a total of 5042 objects in 4724 previously unreported proper motion systems. Here we provide selected comprehensive lists from our SCR proper motion search to date, including 152 red dwarf systems estimated to be within 25 pc (nine within 10 pc), 46 white dwarfs (ten within 25 pc), and 598 subdwarf candidates. The results of this search suggest that there are more nearby systems to be found at fainter magnitudes and lower proper motion limits than those probed so far.Comment: 47 pages, 16 of text. 7 figure

    The Solar Neighborhood XXVII: Discovery of New Proper Motion Stars with mu > 0.18 "/yr in the Southern Sky with 16.5 > R_59F > 18.0

    Full text link
    Here we present 1584 new southern proper motion systems with mu > 0.18 "/yr and 16.5 > R_59F > 18.0. This search complements the six previous SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky for stars within the same proper motion range, but with R_59F < 16.5. As in previous papers, we present distance estimates for these systems and find that three systems are estimated to be within 25 pc, including one, SCR 1546-5534, possibly within the RECONS 10 pc horizon at 6.7 pc, making it the second nearest discovery of the searches. We find 97 white dwarf candidates with distance estimates between 10 and 120 pc, as well as 557 cool subdwarf candidates. The subdwarfs found in this paper make up nearly half of the subdwarf systems reported from our SCR searches, and are significantly redder than those discovered thus far. The SCR searches have now found 155 red dwarfs estimated to be within 25 pc, including 10 within 10 pc. In addition, 143 white dwarf candidates and 1155 cool subdwarf candidates have been discovered. The 1584 systems reported here augment the sample of 4724 systems previously discovered in our SCR searches, and imply that additional systems fainter than R_59F = 18.0 are yet to be discovered.Comment: 11 pages of text, seven figure

    The Solar Neighborhood VIII: Discovery of New High Proper Motion Nearby Stars Using the SuperCOSMOS Sky Survey

    Full text link
    Five new objects with proper motions between 1.0 arcsec/yr and 2.6 arcsec/yr have been discovered via a new RECONS search for high proper motion stars utilizing the SuperCOSMOS Sky Survey. The first portion of the search, discussed here, is centered on the south celestial pole and covers declinations -90 degrees to -57.5 degrees. Photographic photometry from SuperCOSMOS and JHKs near-infrared photometry from 2MASS for stars nearer than 10 pc are combined to provide a suite of new M_Ks-color relations useful for estimating distances to main sequence stars. These relations are then used to derive distances to the new proper motion objects as well as previously known stars with mu >= 1.0 arcsec/yr (many of which have no trigonometric parallaxes) recovered during this phase of the survey. Four of the five new stars have red dwarf colors, while one is a nearby white dwarf. Two of the red dwarfs are likely to be within the RECONS 10 pc sample, and the white dwarf probably lies between 15 and 25 pc. Among the 23 known stars recovered during the search, there are three additional candidates for the RECONS sample that have no trigonometric parallaxes.Comment: 17 pages, 5 figures; accepted for publication in Astronomy Journa

    The Trigonometric Parallax of the Brown Dwarf Planetary System 2MASSW J1207334-393254

    Full text link
    We have measured a trigonometric parallax to the young brown dwarf 2MASSW J1207334-393254. The distance [54.0 (+3.2,-2.8) pc] and space motion confirm membership in the TW Hydrae Association. The primary is a ~25 M_jup brown dwarf. We discuss the "planetary mass" secondary, which is certainly below the deuterium-burning limit but whose colors and absolute magnitudes pose challenges to our current understanding of planetary-mass objects.Comment: Accepted to the Astrophysical Journal Letter

    UCAC3 Proper Motion Survey. I. Discovery of New Proper Motion Stars in UCAC3 with 0.40 "/yr > mu >= 0.18 "/yr between Declinations -90 deg and -47 deg

    Full text link
    Presented here are 442 new proper motion stellar systems in the southern sky between declinations -90\degr and -47\degr with 0\farcs40 yr1^{-1} >> μ\mu \ge 0\farcs18 yr1^{-1}. These systems constitute a 25.3% increase in new systems for the same region of the sky covered by previous SuperCOSMOS RECONS (SCR) searches that used Schmidt plates as the primary source of discovery. Among the new systems are 25 multiples, plus an additional seven new common proper motion companions found to previously known primaries. All stars have been discovered using the third U.S. Naval Observatory (USNO) CCD Astrograph Catalog (UCAC3). A comparison of the UCAC3 proper motions to those from the Hipparcos, Tycho-2, Southern Proper Motion (SPM4), and SuperCOSMOS efforts is presented, and shows that UCAC3 provides similar values and precision to the first three surveys. The comparison between UCAC3 and SuperCOSMOS indicates that proper motions in RA are systematically shifted in the SuperCOSMOS data but are consistent in DEC data, while overall showing a significantly higher scatter. Distance estimates are derived for stars having SuperCOSMOS Sky Survey (SSS) BJB_J, R59FR_{59F}, and IIVNI_{IVN} plate magnitudes and Two-Micron All Sky Survey (2MASS) infrared photometry. We find 15 systems estimated to be within 25 pc, including UPM 1710-5300 our closest new discovery estimated at 13.5 pc. Such new discoveries suggest that more nearby stars are yet to be found in these slower proper motion regimes, indicating that more work is needed to develop a complete map of the solar neighborhood.Comment: 24 pages, 7 figures, 4 tables, accepted to the Astronomical Journal July 07, 201

    The White Dwarfs within 20 Parsecs of the Sun: Kinematics and Statistics

    Get PDF
    We present the kinematical properties, distribution of spectroscopic subtypes, stellar population subcomponents of the white dwarfs within 20 pc of the sun. We find no convincing evidence of halo white dwarfs in the total 20 pc sample of 129 white dwarfs nor is there convincing evidence of genuine thick disk subcomponent members within 20 parsecs. Virtually the entire 20 pc sample likely belongs to the thin disk. The total DA to non-DA ratio of the 20 pc sample is 1.6, a manifestation of deepening envelope convection which transforms DA stars with sufficiently thin H surface layers into non-DAs. The addition of 5 new stars to the 20 pc sample yields a revised local space density of white dwarfs of 4.9±0.5×1034.9\pm0.5 \times 10^{-3} M_{\sun}/yr and a corresponding mass density of 3.3±0.3×1033.3\pm0.3 \times 10^{-3} M_{\sun}/pc3^{3}. We find that at least 15% of the white dwarfs within 20 parsecs of the sun (the DAZ and DZ stars) have photospheric metals that possibly originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, this suggests the possibility that the same percentage have planets or asteroid-like bodies orbiting them.Comment: Accepted for publication in The Astronomical Journa

    Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems

    Full text link
    We present results of a reconnaissance for stellar companions to all 131 radial-velocity-detected candidate extrasolar planetary systems known as of July 1, 2005. CPM companions were investigated using the multi-epoch DSS images, and confirmed by matching the trigonometric parallax distances of the primaries to companion distances estimated photometrically. We also attempt to confirm or refute companions listed in the Washington Double Star Catalog, the Catalogs of Nearby Stars, in Hipparcos results, and in Duquennoy & Mayor (1991). Our findings indicate that a lower limit of 30 (23%) of the 131 exoplanet systems have stellar companions. We report new stellar companions to HD 38529 and HD 188015, and a new candidate companion to HD 169830. We confirm many previously reported stellar companions, including six stars in five systems that are recognized for the first time as companions to exoplanet hosts. We have found evidence that 20 entries in the Washington Double Star Catalog are not gravitationally bound companions. At least three, and possibly five, of the exoplanet systems reside in triple star systems. Three exoplanet systems have potentially close-in stellar companions ~ 20 AU away from the primary. Finally, two of the exoplanet systems contain white dwarf companions. This comprehensive assessment of exoplanet systems indicates that solar systems are found in a variety of stellar multiplicity environments - singles, binaries, and triples; and that planets survive the post-main-sequence evolution of companion stars.Comment: 52 pages, 7 figures, Accepted for publication in Ap

    The Solar Neighborhood XXIII CCD Photometric Distance Estimates of SCR Targets -- 77 M Dwarf Systems within 25 Parsecs

    Full text link
    We present CCD photometric distance estimates of 100 SCR (SuperCOSMOS RECONS) systems with μ\mu \geq 0\farcs18/yr, 28 of which are new discoveries previously unpublished in this series of papers. These distances are estimated using a combination of new VRIVRI photometry acquired at CTIO and JHKJHK magnitudes extracted from 2MASS. The estimates are improvements over those determined using photographic plate BRIBRI magnitudes from SuperCOSMOS plus JHKJHK, as presented in the original discovery papers. In total, 77 of the 100 systems investigated are predicted to be within 25 pc. If all 77 systems are confirmed to have π\pitrig_{trig} \ge 40 milliarcseconds, this sample would represent a 23% increase in M dwarf systems nearer than 25 pc in the southern sky.Comment: 34 pages, 8 figure

    The Solar Neighborhood. XIX. Discovery and Characterization of 33 New Nearby White Dwarf Systems

    Full text link
    We present spectra for 33 previously unclassified white dwarf systems brighter than V = 17 primarily in the southern hemisphere. Of these new systems, 26 are DA, 4 are DC, 2 are DZ, and 1 is DQ. We suspect three of these systems are unresolved double degenerates. We obtained VRI photometry for these 33 objects as well as for 23 known white dwarf systems without trigonometric parallaxes, also primarily in the southern hemisphere. For the 56 objects, we converted the photometry values to fluxes and fit them to a spectral energy distribution using the spectroscopy to determine which model to use (i.e. pure hydrogen, pure helium, or metal-rich helium), resulting in estimates of effective temperature and distance. Eight of the new and 12 known systems are estimated to be within the NStars and Catalogue of Nearby Stars (CNS) horizons of 25 pc, constituting a potential 18% increase in the nearby white dwarf sample. Trigonometric parallax determinations are underway via CTIOPI for these 20 systems. One of the DCs is cool so that it displays absorption in the near infrared. Using the distance determined via trigonometric parallax, we are able to constrain the model-dependent physical parameters and find that this object is most likely a mixed H/He atmosphere white dwarf similar to other cool white dwarfs identified in recent years with significant absorption in the infrared due to collision-induced absorptions by molecular hydrogen.Comment: 33 pages, 10 figures, accepted for publication in the Astronomical Journa
    corecore