18,820 research outputs found

    Dynamical mechanism for ultra-light scalar Dark Matter

    Get PDF
    Assuming a double-well bare potential for a self-interacting scalar field, with the Higgs vacuum expectation value, it is shown that non-perturbative quantum corrections naturally lead to ultra-light particles of mass 1023\simeq10^{-23}eV, if these non-perturbative effects occur at a time consistent with the Electroweak phase transition. This mechanism could be relevant in the context of Bose Einstein Condensate studies for the description of cold Dark Matter. Given the numerical consistency with the Electroweak transition, an interaction potential for Higgs and Dark Matter fields is proposed, where spontaneous symmetry breaking for the Higgs field leads to the generation of ultra-light particles, in addition to the usual Higgs mechanism. This model also naturally leads to extremely weak interactions between the Higgs and Dark Matter particles.Comment: 12 pages, includes the derivation of the effective potential suppressed by the volum

    Hyperonic crystallization in hadronic matter

    Full text link
    Published in Hadrons, Nuclei and Applications, World Scientific, Singapore, Proc.of the Conference Bologna2000. Structure of the Nucleus at the Dawn of the Century, G. Bonsignori, M. Bruno, A. Ventura, D. Vretenar Editors, pag. 319.Comment: 4 pages, 2figure

    Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak

    Get PDF
    It is well-known that size-adjustments based on Edgeworth expansions for the t-statistic perform poorly when instruments are weakly correlated with the endogenous explanatory variable. This paper shows, however, that the lack of Edgeworth expansions and bootstrap validity are not tied to the weak instrument framework, but instead depends on which test statistic is examined. In particular, Edgeworth expansions are valid for the score and conditional likelihood ratio approaches, even when the instruments are uncorrelated with the endogenous explanatory variable. Furthermore, there is a belief that the bootstrap method fails when instruments are weak, since it replaces parameters with inconsistent estimators. Contrary to this notion, we provide a theoretical proof that guarantees the validity of the bootstrap for the score test, as well as the validity of the conditional bootstrap for many conditional tests. Monte Carlo simulations show that the bootstrap actually decreases size distortions in both cases.

    Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak

    Get PDF
    It is well-known that size-adjustments based on Edgeworth expansions for the t-statistic perform poorly when instruments are weakly correlated with the endogenous explanatory variable. This paper shows, however, that the lack of Edgeworth expansions and bootstrap validity are not tied to the weak instrument framework, but instead depends on which test statistic is examined. In particular, Edgeworth expansions are valid for the score and conditional likelihood ratio approaches, even when the instruments are uncorrelated with the endogenous explanatory variable. Furthermore, there is a belief that the bootstrap method fails when instruments are weak, since it replaces parameters with inconsistent estimators. Contrary to this notion, we provide a theoretical proof that guarantees the validity of the bootstrap for the score test, as well as the validity of the conditional bootstrap for many conditional tests. Monte Carlo simulations show that the bootstrap actually decreases size distortions in both cases.
    corecore