15 research outputs found

    Slow sedimentation and deformability of charged lipid vesicles

    Get PDF
    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity

    RECEPTOR MOBILITY AND CYTOSKELETAL DYNAMICS AT THE IMMUNE SYNAPSE: THE ROLE OF ACTIN REGULATORY PROTEINS

    Get PDF
    Spatial and temporal regulation of actin and microtubule dynamics is of utmost importance for many cellular processes at different sub-cellular length scales. This is particularly relevant for cells of the immune system, which must respond rapidly and accurately to protect the host, where B cells and T cells are the main players during the adaptive immune response. An understanding of the biophysical principles underlying cytoskeletal dynamics and regulation of signaling will help elucidate the fundamental mechanisms driving B and T cell immune response. B cell receptor (BCR) diffusivity is modulated by signaling activation, however the factors linking mobility and signaling state are not completely understood. I used single molecule imaging to examine BCR mobility during signaling activation and a novel machine learning based method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors Arp2/3 and formins resulted decreased BCR mobility. Loss of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, leads to a predominance of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces diffusivity of the stimulatory co-receptor CD19, but not that of unstimulated FcÎłRIIB, an inhibitory co-receptor. Our results implicate the dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions, thereby modulating B cell signaling. Activation of T cells leads to the formation of the immunological synapse (IS) with an antigen presenting cell (APC). This requires T cell polarization and coordination between the actomyosin and microtubule cytoskeleton. The interactions between the different cytoskeletal components during T cell activation are not well understood. I use high-resolution fluorescence microscopy to study actin-microtubule crosstalk during IS formation. Microtubules in actin rich zones display more deformed shapes and higher dynamics compared to MTs at the actin-depleted region. Chemical inhibition of formin and myosin activation reduced MT deformations, suggesting that actomyosin contractility plays an important role in defining MT shapes. Interestingly MT growth was slowed by formin inhibition and resulting enrichment of Arp2/3 nucleated actin networks. These observations indicate an important mechanical coupling between the actomyosin and microtubule systems where different actin structures influence microtubule dynamics in distinct ways

    WASP family proteins regulate the mobility of the B cell receptor during signaling activation.

    Get PDF
    Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces the diffusivity of CD19, a stimulatory co-receptor, but not that of FcÎłRIIB, an inhibitory co-receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions for modulating B cell signaling

    Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 1452, doi:10.1038/s41467-017-01250-8.Light-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, and gentle imaging of live specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of four complementary views in 250 ms, doubling speed and improving information content relative to symmetric dual-view LSFM. We also report a modified deconvolution algorithm that removes associated epifluorescence contamination and fuses all views for resolution recovery. Furthermore, we enhance spatial resolution (to <300 nm in all three dimensions) by applying our method to single-view LSFM, permitting simultaneous acquisition of two high-resolution views otherwise difficult to obtain due to steric constraints at high numerical aperture. We demonstrate the broad applicability of our method in a variety of samples, studying mitochondrial, membrane, Golgi, and microtubule dynamics in cells and calcium activity in nematode embryos.This work was supported by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health. P.L. and H.S. acknowledge summer support from the Marine Biological Laboratory at Woods Hole, through the Whitman- and Fellows- program. P.L. acknowledges support from NIH National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH) under grant number R01EB017293. C.S. acknowledges funding from the National Institute of General Medical Sciences of NIH under Award Number R25GM109439 (Project Title: University of Chicago Initiative for Maximizing Student Development [IMSD]) and NIBIB under grant number T32 EB002103. Partial funding for the computation in this work was provided by NIH grant numbers S10 RRO21039 and P30 CA14599. A.U. and I.R.-S. were supported by the NSF grant number 1607645

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    N-WASP regulates the mobility of the B cell receptor and co-receptors during signaling activation

    No full text
    Regulation of membrane receptor mobility is important in tuning the cell’s response to external signals. This is particularly relevant in the context of immune receptor signaling. The binding of B cell receptors (BCR) to antigen induces B cell receptor activation. While actin dynamics and BCR signaling are known to be linked, the role of actin dynamics in modulating receptor mobility is not well understood. Here, we use single molecule imaging to examine BCR movement during signaling activation and examine the role of actin dynamics on BCR mobility. We use a novel machine learning based method to classify BCR trajectories into distinct diffusive states and show that the actin regulatory protein N-WASP regulates receptor mobility. Constitutive loss or acute inhibition of N-WASP, which is associated with enhanced signaling, leads to a predominance of BCR trajectories with lower diffusivity and is correlated with a decrease in actin dynamics. Furthermore, loss of N-WASP reduces diffusivity of CD19, a stimulatory co-receptor of the BCR but not that of unstimulated FcγRIIB, an inhibitory co-receptor. The effect of N-WASP is mirrored by inhibition of the Arp2/3 complex and formins. Our results implicate the dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions, thereby modulating B cell signaling

    Pogonia japonica Reichb. fil.

    No full text
    ćŽŸè‘—ć’Œć: ăƒˆă‚­ă‚”ă‚Šç§‘ć: ăƒ©ăƒłç§‘ = OrchidaceaeæŽĄé›†ćœ°: ćŒ—æ”·é“ 怩楩郥 è±ŠćŻŒç”ș ă‚”ăƒ­ăƒ™ăƒ„æčżćŽŸ (ćŒ—æ”·é“ 怩楩 è±ŠćŻŒç”ș ă‚”ăƒ­ăƒ™ăƒ„æčżćŽŸ)æŽĄé›†æ—„: 1966/7/6æŽĄé›†è€…: 萩ćș­äžˆćŁœæ•Žç†ç•Șć·: JH003069ć›œç«‹ç§‘ć­Šćšç‰©é€šæ•Žç†ç•Șć·: TNS-VS-95306
    corecore