3 research outputs found

    TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response.

    No full text
    We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation

    Discovery of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole, a novel in vivo cannabinoid antagonist containing a 1,2,4-triazole motif

    No full text
    A new series of 1,2,4-triazoles have been prepared and the evaluation of their cannabinoid properties have been carried out. Compound 8 showed cannabinoid silent antagonist activity in mouse vas deferens and guinea pig ileum preparations and in vivo assays (cannabinoid tetrad) in mouse. It did not have intrinsic activity in these bioassays, and therefore, it did not behave as a partial agonist or an inverse agonistThis work was supported by Spanish Grant SAF 00-0114-C02. L.H.-F. is recipient of the I3P Fellowship from the C.S.I.C. Laboratorios Dr. Esteve, S.A. is gratefully acknowledged. L.H.-F. thanks the Spanish Society of Therapeutic Chemistry (SEQT) for the Ramon Madroñero Young Researcher Award.Peer reviewe

    TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response

    No full text
    OBJECTIVE: We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. METHODS: We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. RESULTS: Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. CONCLUSIONS: The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation
    corecore