2,269 research outputs found
Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment
This paper addresses planning and control of robot motion under uncertainty
that is formulated as a continuous-time, continuous-space stochastic optimal
control problem, by developing a topology-guided path integral control method.
The path integral control framework, which forms the backbone of the proposed
method, re-writes the Hamilton-Jacobi-Bellman equation as a statistical
inference problem; the resulting inference problem is solved by a sampling
procedure that computes the distribution of controlled trajectories around the
trajectory by the passive dynamics. For motion control of robots in a highly
cluttered environment, however, this sampling can easily be trapped in a local
minimum unless the sample size is very large, since the global optimality of
local minima depends on the degree of uncertainty. Thus, a homology-embedded
sampling-based planner that identifies many (potentially) local-minimum
trajectories in different homology classes is developed to aid the sampling
process. In combination with a receding-horizon fashion of the optimal control
the proposed method produces a dynamically feasible and collision-free motion
plans without being trapped in a local minimum. Numerical examples on a
synthetic toy problem and on quadrotor control in a complex obstacle field
demonstrate the validity of the proposed method.Comment: arXiv admin note: text overlap with arXiv:1510.0534
A Distributed ADMM Approach to Non-Myopic Path Planning for Multi-Target Tracking
This paper investigates non-myopic path planning of mobile sensors for
multi-target tracking. Such problem has posed a high computational complexity
issue and/or the necessity of high-level decision making. Existing works tackle
these issues by heuristically assigning targets to each sensing agent and
solving the split problem for each agent. However, such heuristic methods
reduce the target estimation performance in the absence of considering the
changes of target state estimation along time. In this work, we detour the
task-assignment problem by reformulating the general non-myopic planning
problem to a distributed optimization problem with respect to targets. By
combining alternating direction method of multipliers (ADMM) and local
trajectory optimization method, we solve the problem and induce consensus
(i.e., high-level decisions) automatically among the targets. In addition, we
propose a modified receding-horizon control (RHC) scheme and edge-cutting
method for efficient real-time operation. The proposed algorithm is validated
through simulations in various scenarios.Comment: Copyright 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other work
Molecular characterization of the Tobacco rattle virus RNA2 genome isolated from Gladiolus
Tobacco rattle virus (TRV-K) was first identified in a symptomatic Gladiolus plant cultivated in Korea. We analyzed the TRV-K genome and compared its phylogeny with other TRV isolates. After constructing of a full-length genomic RNA2 strand clone, a complete sequence was generated from several overlapping clones. The cloned genome was 3261 bases in length, identical to TRV-K, and had three open reading frames. TRV-K had the highest sequence identity with the American isolate TRV-ORY. Sequence analysis of the RNA2 genome showed that TRV-K contains an intact 2a, 2b, and 2c coding sequence and an RNA1-related 3′ terminus, which is typical of TRV RNA2. Phylogenetic analysis revealed that TRV-K is in the same cluster as the American isolates and another Korean isolate, TRV-SK; however, it was in a different cluster than the European isolates
- …