37,825 research outputs found

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources

    Common Warm Dust Temperatures Around Main-sequence Stars

    Get PDF
    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-K0) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (~190 K and ~60 K for the inner and outer dust components, respectively)—slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ~150 K can deposit particles into an inner/warm belt, where the small grains are heated to T_(dust)~ 190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-K0 stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon

    The fabrication of single heterojunction AlGaAs/InGaP electroluminescent diodes

    Get PDF
    [[abstract]]High quality GaAs/AlxGa1−xAs/In0.5Ga0.5P single heterostructure electroluminescent devices have been fabricated by liquid‐phase epitaxy. Three different compositions (x=0.45, 0.58, and 0.85) of AlxGa1−xAs layers were made to compare their properties. Diodes fabricated from these heterostructures have been characterized by electron beam induced current, electroluminescence, quantum efficiency, output power, and current‐voltage measurements. Emission peak wavelengths and full width at half maximum values of the light emitting diodes are, respectively, 652.5, 654.4, and 652.8 nm, and 67, 67, and 75 meV. The peak wavelengths of the light emitting diode shift 6 meV towards the lower‐energy side compared to the photoluminescent peak wavelength of the same electron concentration in the Te‐doped In0.5Ga0.5P layer. For most light emitting diodes, output powers and efficiency are in the range of 50–100 ÎŒW and 0.062%–0.1%, respectively.[[fileno]]2030161010158[[department]]é›»æ©Ÿć·„çš‹ć­ž

    The Decay of Debris Disks around Solar-Type Stars

    Full text link
    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 ÎŒ\mum for 255 stars of types F4 - K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the HR diagram, to assign accurate stellar ages. Within this spectral type range, at 24 ÎŒ\mum, 13.6±2.8%13.6 \pm 2.8 \% of the stars younger than 5 Gyr have excesses at the 3σ\sigma level or more, while none of the older stars do, confirming previous work. At 70 ÎŒ\mum, 22.5±3.6%22.5 \pm 3.6\% of the younger stars have excesses at ≄ \ge 3 σ\sigma significance, while only 4.7−2.2+3.74.7^{+3.7}_{-2.2}% of the older stars do. To characterize the far infrared behavior of debris disks more robustly, we double the sample by including stars from the DEBRIS and DUNES surveys. For the F4 - K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far infrared excess with spectral type (detected fractions of 21.9−4.3+4.8%^{+4.8}_{-4.3}\%, late F; 16.5−3.3+3.9%^{+3.9}_{-3.3}\%, G; and 16.9−5.0+6.3%^{+6.3}_{-5.0}\%, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses with fractional luminosities just under 10−510^{-5}. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than is expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.Comment: 46 pages. 7 figures. Accepted to Ap

    Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare

    Full text link
    We analyzed high-cadence sit-and-stare observations acquired with the Hinode/EIS spectrometer and HXR measurements acquired with RHESSI during an M-class flare. During the flare impulsive phase, we observe no significant flows in the cooler Fe XIII line but strong upflows, up to 80-150 km/s, in the hotter Fe XVI line. The largest Doppler shifts observed in the Fe XVI line were co-temporal with the sharp intensity peak. The electron density obtained from a Fe XIII line pair ratio exhibited fast increase (within two minutes) from the pre-flare level of 5.01x10^(9) cm^(-3) to 3.16x10^(10) cm^(-3) during the flare peak. The nonthermal energy flux density deposited from the coronal acceleration site to the lower atmospheric layers during the flare peak was found to be 1.34x10^(10) erg/s/cm^(2) for a low-energy cut-off that was estimated to be 16 keV. During the decline flare phase, we found a secondary intensity and density peak of lower amplitude that was preceded by upflows of 15 km/s that were detected in both lines. The flare was also accompanied by a filament eruption that was partly captured by the EIS observations. We derived Doppler velocities of 250-300 km/s for the upflowing filament material.The spectroscopic results for the flare peak are consistent with the scenario of explosive chromospheric evaporation, although a comparatively low value of the nonthermal energy flux density was determined for this phase of the flare. This outcome is discussed in the context of recent hydrodynamic simulations. It provides observational evidence that the response of the atmospheric plasma strongly depends on the properties of the electron beams responsible for the heating, in particular the steepness of the energy distribution.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption

    Get PDF
    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication ~July 2012
    • 

    corecore