5,539 research outputs found

    Characterization of vaccinia virus A12L protein proteolysis and its participation in virus assembly

    Get PDF
    Vaccinia virus (VV) undergoes a proteolytic processing to evolve from immature virus particles into intracellular mature virus particles. Most of structural core protein precursors such as p4a, p4b, and p25K are assembled into previrions and then proteolytically processed to yield core proteins, 4a, 4b, and 25 K, which become components of a mature virus particle. These structural rearrangements take place at a conserved cleavage motif, Ala-Gly-X (where X is any amino acid) and catalyzed by a VV encoded proteinase, the I7L gene product. The VV A12L gene product, a 25 kDa protein synthesized at late times during infection is cleaved at an N-terminal AG/A site, resulting in a 17 kDa cleavage product. However, due to the distinct characteristics of A12L proteolysis such as the localization of both the A12L full-length protein and its cleavage product in mature virions and two putative cleavage sites (Ala-Gly-Lys) located at internal and C-terminal region of A12L ORF, it was of interest to examine the A12L proteolysis for better understanding of regulation and function of VV proteolysis. Here, we attempted to examine the in vivo A12L processing by: determining the kinetics of the A12L proteolysis, the responsible viral protease, and the function of the A12L protein and its cleavage events. Surprisingly, the A12L precursor was cleaved into multiple peptides not only at an N-terminal AG/A but also at both an N- and a C-terminus. Despite the involvement of I7L proteinase for A12L proteolysis, its incomplete processing with slow kinetics and additional cleavages not at the two AG/K sites demonstrate unique regulation of VV proteolysis. An immunoprecipitation experiment in concert with N-terminal sequencing analyses and mass spectrometry led to the identification of VV core and membrane proteins, which may be associated with the A12L protein and suggested possible involvement of A12L protein and its cleavage products in multiple stages in virus morphogenesis

    Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Get PDF
    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ~0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their moving along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by spacetime inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals

    Optimal Multiuser Diversity in Multi-Cell MIMO Uplink Networks: User Scaling Law and Beamforming Design

    Get PDF
    We introduce a distributed protocol to achieve multiuser diversity in a multicell multiple-input multiple-output (MIMO) uplink network, referred to as a MIMO interfering multiple-access channel (IMAC). Assuming both no information exchange among base stations (BS) and local channel state information at the transmitters for the MIMO IMAC, we propose a joint beamforming and user scheduling protocol, and then show that the proposed protocol can achieve the optimal multiuser diversity gain, i.e., KM log (SNR log N), as long as the number of mobile stations (MSs) in a cell, N, scales faster than SNRKM-L/1-epsilon for a small constant epsilon > 0, where M, L, K, and SNR denote the number of receive antennas at each BS, the number of transmit antennas at each MS, the number of cells, and the signal-to-noise ratio, respectively. Our result indicates that multiuser diversity can be achieved in the presence of intra-cell and inter-cell interference even in a distributed fashion. As a result, vital information on how to design distributed algorithms in interference-limited cellular environments is provided

    Changes in activity and isozyme patterns of peroxidase and chitinase in kiwifruit pollen

    Get PDF
    In this study, changes in activity and isozyme patterns of peroxidase (POD) and chitinase in kiwifruit (Actinidia chinensis) pollen were investigated under different storage conditions. Although residual activity was detected in heat-treated pollen, changes in POD activity were observed due to difference in storage conditions as revealed by preliminary studies in which pollen germination varied with different storage conditions. POD activity of kiwifruit pollen increased as proportions of viable pollen increased, indicating a positive correlation (R2=0.993) between pollen viability and POD activity. There was a detectable difference in the relative activity of POD enzyme between heat-treated and viable pollen. Decoloration of Congo Red was observed in germination medium which fresh pollen was cultured. The activity of individual chitinase isozymes present in kiwifruit pollen differed depending on storage conditions, which had a direct impact on pollen vigor. Although direct evidence showing that chitinase isozymes are implicated in pollen vigor is still uncertain, distinction of isozymes may facilitate more precise identification of viable pollen which possesses germination potential from non-viable pollen. Taken together, these results suggest that monitoring the activity of POD and chitinase can be an attractive alternative to evaluate pollen vigor in kiwifruit

    Anti-tetherin activities in Vpu-expressing primate lentiviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-viral activity of the cellular restriction factor, BST-2/tetherin, was first observed as an ability to block the release of Vpu-minus HIV-1 from the surface of infected cells. However, tetherin restriction is also counteracted by primate lentiviruses that do not express a Vpu protein, where anti-tetherin functions are provided by either the Env protein (HIV-2, SIVtan) or the Nef protein (SIVsm/mac and SIVagm). Within the primate lentiviruses, Vpu is also present in the genomes of SIVcpz and certain SIVsyk viruses. We asked whether, in these viruses, anti-tetherin activity was always a property of Vpu, or if it had selectively evolved in HIV-1 to perform this function.</p> <p>Results</p> <p>We found that despite the close relatedness of HIV-1 and SIVcpz, the chimpanzee viruses use Nef instead of Vpu to counteract tetherin. Furthermore, SIVcpz Nef proteins had activity against chimpanzee but not human tetherin. This specificity mapped to a short sequence that is present in the cytoplasmic tail of primate but not human tetherins, and this also accounts for the specificity of SIVsm/mac Nef for primate but not human tetherins. In contrast, Vpu proteins from four diverse members of the SIVsyk lineage all displayed an anti-tetherin activity that was active against macaque tetherin. Interestingly, Vpu from a SIVgsn isolate was also found to have activity against human tetherin.</p> <p>Conclusions</p> <p>Primate lentiviruses show a high degree of flexibility in their use of anti-tetherin factors, indicating a strong selective pressure to counteract tetherin restriction. The identification of an activity against human tetherin in SIVgsn Vpu suggests that the presence of Vpu in the ancestral SIVmus/mon/gsn virus believed to have contributed the 3' half of the HIV-1 genome may have played a role in the evolution of viruses that could counteract human tetherin and infect humans.</p

    High glucose induces MCP-1 expression partly via tyrosine kinase–AP-1 pathway in peritoneal mesothelial cells

    Get PDF
    High glucose induces MCP-1 expression partly via tyrosine kinase–AP-1 pathway in peritoneal mesothelial cells.BackgroundHigh glucose in peritoneal dialysis solutions has been implicated in the pathogenesis of peritoneal fibrosis in chronic ambulatory peritoneal dialysis (CAPD) patients. However, the mechanisms are not very clear. Peritoneal macrophages seem to participate in the process of peritoneal fibrosis and monocyte chemoattractant protein-1 (MCP-1) plays a key role in the recruitment of monocytes toward the peritoneal cavity. However, little is known about the effect of high glucose on MCP-1 expression and its signal transduction pathway in human peritoneal mesothelial cells.MethodsMesothelial cells were cultured with glucose (5 to 100 mmol/L) or mannitol chronically for up to seven days. MCP-1 expression of mRNA and protein was measured by Northern blot analysis and enzyme-linked immunosorbent assay (ELISA). Chemotactic activity of high-glucose–conditioned culture supernatant was measured by chemotactic assay. To examine the roles of the transcription factors activator protein-1 (AP-1) and nuclear factor-κB (NF-κB), electrophoretic mobility shift assay (EMSA) was performed.ResultsGlucose induced MCP-1 mRNA expression in a time- and dose-dependent manner. MCP-1 protein in cell culture supernant was also increased. Equivalent concentrations of mannitol had no significant effect. High-glucose–conditioned supernatant possessed an increased chemotactic activity for monocytes, which was neutralized by anti–MCP-1 antibody. EMSA revealed that glucose increased the AP-1 binding activity in a time- and dose-dependent manner, but not NF-κB. Curcumin, an inhibitor of AP-1, dose-dependently suppressed the induction of MCP-1 mRNA by high glucose. Tyrosine kinase inhibitors such as genistein (12.5 to 50 μmol/L) and herbimycin A (0.1 to 1 μmol/L) inhibited the high-glucose–induced MCP-1 mRNA expression in a dose-dependent manner, and also suppressed the high-glucose–induced AP-1 binding activity.ConclusionsHigh glucose induced mesothelial MCP-1 expression partly via the tyrosine kinase-AP-1 pathway
    corecore