335 research outputs found

    Aflatoxin B1 Promotes Influenza Replication and Increases Virus Related Lung Damage via Activation of TLR4 Signaling

    Get PDF
    Aflatoxin B1 (AFB1), which alters immune responses to mammals, is one of the most common mycotoxins in feeds and food. Swine influenza virus (SIV) is a major pathogen of both animals and humans. However, there have been few studies about the relationship between AFB1 exposure and SIV replication. Here, for the first time, we investigated the involvement of AFB1 in SIV replication in vitro and in vivo and explored the underlying mechanism using multiple cell lines and mouse models. In vitro studies demonstrated that low concentrations of AFB1 (0.01–0.25 μg/ml) markedly promoted SIV replication as revealed by increased viral titers and matrix protein (M) mRNA and nucleoprotein (NP) levels in MDCK cells, A549 cells and PAMs. In vivo studies showed that 10–40 μg/kg of AFB1 exacerbated SIV infection in mice as illustrated by significantly higher lung virus titers, viral M mRNA levels, NP levels, lung indexes and more severe lung damage. Further study showed that AFB1 upregulated TLR4, but not other TLRs, in SIV-infected PAMs. Moreover, AFB1 activated TLR4 signaling as demonstrated by the increases of phosphorylated NFκB p65 and TNF-α release in PAMs and mice. In contrast, TLR4 knockdown or the use of BAY 11-7082, a specific inhibitor of NFκB, blocked the AFB1-promoted SIV replication and inflammatory responses in PAMs. Furthermore, a TLR4-specific antagonist, TAK242, and TLR4 knockout both attenuated the AFB1-promoted SIV replication, inflammation and lung damage in mice. We therefore conclude that AFB1 exposure aggravates SIV replication, inflammation and lung damage by activating TLR4-NFκB signaling

    Elevated Apoptosis and Impaired Proliferation Contribute to Downregulated Peripheral γ

    Get PDF
    Objective. To investigate the frequency of peripheral γδ T cells in patients with systemic lupus erythematosus (SLE) and its correlation with disease activity and to analyze the apoptotic status, proliferation ability, and intracellular cytokine profile of these cells. Methods. Flow cytometry was performed to detect the percentage and intracellular cytokine expression of peripheral γδ T cells from SLE patients. Annexin-V/PI double staining was applied to determine the proportion of apoptotic γδ and CD3+ T cells. γδ T cell proliferation was analyzed by CFSE labeling technique. Results. The percentage and absolute number of γδ T cells were remarkably decreased in active SLE patients compared to those in inactive patients and healthy controls, with γδ T cell count negatively correlated with disease activity. Compared with healthy controls, peripheral γδ T cells from active SLE patients exhibited higher apoptotic rate and lower proliferation ability, as well as elevated expression of intracellular IFN-γ, IL-4, IL-10, and TGF-β, but not IL-17 or Foxp3. Conclusion. Decreased γδ T cells in the peripheral blood of SLE patients might be caused by upregulated apoptosis and downregulated cell proliferation. These γδ T cells may secret both pro- and anti-inflammatory cytokines to perform their functions in SLE

    Dual functions of the ZmCCT-associated quantitative trait locus in flowering and stress responses under long-day conditions

    Get PDF
    Gene ontology enrichment of differentially expressed genes in HZ4 and HZ4-NIL in three development stages. (XLS 21 kb

    Long-term trends and drivers of aerosol pH in eastern China

    Get PDF
    Aerosol acidity plays a key role in regulating the chemistry and toxicity of atmospheric aerosol particles. The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. Here, we reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China, calculated with the ISORROPIA model based on observed gas and aerosol compositions. The implementation of the Air Pollution Prevention and Control Action Plan led to −35.8 %, −37.6 %, −9.6 %, −81.0 % and 1.2 % changes of PM2.5, SO42-, NHx, non-volatile cations (NVCs) and NO3- in the Yangtze River Delta (YRD) region during this period. Different from the drastic changes of aerosol compositions due to the implementation of the Air Pollution Prevention and Control Action Plan, aerosol pH showed a minor change of −0.24 over the 9 years. Besides the multiphase buffer effect, the opposite effects from the changes of SO42- and non-volatile cations played key roles in determining this minor pH trend, contributing to a change of +0.38 and −0.35, respectively. Seasonal variations in aerosol pH were mainly driven by the temperature, while the diurnal variations were driven by both temperature and relative humidity. In the future, SO2, NOx and NH3 emissions are expected to be further reduced by 86.9 %, 74.9 % and 41.7 % in 2050 according to the best health effect pollution control scenario (SSP1-26-BHE). The corresponding aerosol pH in eastern China is estimated to increase by ∼0.19, resulting in 0.04 less NO3- and 0.12 less NH4+ partitioning ratios, which suggests that NH3 and NOx emission controls are effective in mitigating haze pollution in eastern China.</p

    Exosomal Vimentin from Adipocyte Progenitors Protects Fibroblasts against Osmotic Stress and Inhibits Apoptosis to Enhance Wound Healing

    Get PDF
    Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts' response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions

    Effects of Xiao Chengqi Formula on Slow Transit Constipation by Assessing Gut Microbiota and Metabolomics Analysis in vitro and in vivo

    Get PDF
    The Xiao Chengqi (XCQ) formula is a newly constituted traditional Chinese medicine prescription in the treatment of intestinal motility deficiency and is effective in patients with slow transit constipation (STC). XCQ formula was reconstructed based on a “Chengqi” decoction. Astragali Radix, Angelicae Sinensis Radix, and cooked ground Salviae Miltiorrhizae Radix et Rhizoma were added to the prescription to enhance. An STC rat model was constructed and treated with the formula to understand the detailed mechanism by which XCQ promotes intestinal peristalsis. The effects of the XCQ formula on intestinal microflora and metabolic levels and the possible molecular mechanism of its regulation were explored using 16S rDNA sequencing, metabolomics sequencing, and tissue RNA sequencing. The results showed a significant decrease in the abundance of Roseburia spp. in the feces of STC rats, a significant decrease in the content of butyl aminobenzene (BAB) in feces, and an increase in the number of interstitial cells of Cajal (ICC) in the colon of STC rats. Furthermore, in vitro and in vivo experiments revealed that BAB could activate IL-21R on the ICC surface, upregulate the phosphorylation of the downstream molecules STAT3 and ERK, and inhibit loperamide-induced ICC apoptosis. Therefore, the XCQ formula can improve the defecation status of patients with STC by protecting ICC activity, promoting the colonization of Roseburia spp. to promote peristalsis, and increasing the BAB content after metabolism

    Electronic Health Record-Based Screening for Major Cancers: A 9-Year Experience in Minhang District of Shanghai, China

    Get PDF
    Background: An electronic health record (e-HR) system has been developed in Minhang District of Shanghai, China, since 2005, making it convenient for local health institutions to provide integrative and comprehensive health care and management for major diseases.Methods: In 2008, an e-HR-based cancer prevention program was initiated to screen multiple cancers, including colorectal, gastric, liver, lung, cervical, and breast cancers, and provide subsequent health education and health management to cancer patients and high-risk individuals. This study was designed in prospective analysis, based on the constructive analysis of key information, observation of cancer screening and healthcare processes and organizations, and stages of cancers detected by the e-HR-based programs.Results: From 2008 to 2016, health education was conducted for over 5 million attendances, and more than 3 million screening tests were performed for eligible residents over 40 years old. A total of 2,948 cancer cases were detected, accounting for 13.3% of all newly diagnosed cancers in the district during the 9-year period. Thirty point seven percent detected cancer cases were at the early stage, significantly higher than the 22.9% in cases identified by e-HR-based follow-up and 13.8% in cases diagnosed due to signs or symptoms. More than 136,000 residents were identified as individuals at high risk of cancer and subject to sustainable clinical follow-up and health management.Conclusions: The successful application of e-HR system in cancer prevention and control in Minhang district of Shanghai, China, implies that the system may act as an extendable and sustainable infrastructure for comprehensive health care and services for a broad spectrum of diseases and health events
    corecore