7,403 research outputs found

    BattRAE: Bidimensional Attention-Based Recursive Autoencoders for Learning Bilingual Phrase Embeddings

    Full text link
    In this paper, we propose a bidimensional attention based recursive autoencoder (BattRAE) to integrate clues and sourcetarget interactions at multiple levels of granularity into bilingual phrase representations. We employ recursive autoencoders to generate tree structures of phrases with embeddings at different levels of granularity (e.g., words, sub-phrases and phrases). Over these embeddings on the source and target side, we introduce a bidimensional attention network to learn their interactions encoded in a bidimensional attention matrix, from which we extract two soft attention weight distributions simultaneously. These weight distributions enable BattRAE to generate compositive phrase representations via convolution. Based on the learned phrase representations, we further use a bilinear neural model, trained via a max-margin method, to measure bilingual semantic similarity. To evaluate the effectiveness of BattRAE, we incorporate this semantic similarity as an additional feature into a state-of-the-art SMT system. Extensive experiments on NIST Chinese-English test sets show that our model achieves a substantial improvement of up to 1.63 BLEU points on average over the baseline.Comment: 7 pages, accepted by AAAI 201

    Popularity, face and voice: Predicting and interpreting livestreamers' retail performance using machine learning techniques

    Full text link
    Livestreaming commerce, a hybrid of e-commerce and self-media, has expanded the broad spectrum of traditional sales performance determinants. To investigate the factors that contribute to the success of livestreaming commerce, we construct a longitudinal firm-level database with 19,175 observations, covering an entire livestreaming subsector. By comparing the forecasting accuracy of eight machine learning models, we identify a random forest model that provides the best prediction of gross merchandise volume (GMV). Furthermore, we utilize explainable artificial intelligence to open the black-box of machine learning model, discovering four new facts: 1) variables representing the popularity of livestreaming events are crucial features in predicting GMV. And voice attributes are more important than appearance; 2) popularity is a major determinant of sales for female hosts, while vocal aesthetics is more decisive for their male counterparts; 3) merits and drawbacks of the voice are not equally valued in the livestreaming market; 4) based on changes of comments, page views and likes, sales growth can be divided into three stages. Finally, we innovatively propose a 3D-SHAP diagram that demonstrates the relationship between predicting feature importance, target variable, and its predictors. This diagram identifies bottlenecks for both beginner and top livestreamers, providing insights into ways to optimize their sales performance.Comment: 25 pages, 10 figure

    Peroxisomal regulation of redox homeostasis and adipocyte metabolism

    Get PDF
    Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases

    Detecting Floating-Point Errors via Atomic Conditions

    Get PDF
    This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to effectively guide the search for large floating-point errors. Compared with existing approaches, our work based on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2) atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis significantly more practical. We expect the methodology and principles behind our approach to benefit other floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction of our work, we have made our implementation, evaluation data and results publicly available on GitHub at https://github.com/FP-Analysis/atomic-condition.ISSN:2475-142

    Enhancing Motor Imagery Decoding in Brain Computer Interfaces using Riemann Tangent Space Mapping and Cross Frequency Coupling

    Full text link
    Objective: Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs), aiming to decoding motor intentions from electroencephalogram (EEG) signals. Method: Drawing inspiration from Riemannian geometry and Cross-Frequency Coupling (CFC), this paper introduces a novel approach termed Riemann Tangent Space Mapping using Dichotomous Filter Bank with Convolutional Neural Network (DFBRTS) to enhance the representation quality and decoding capability pertaining to MI features. DFBRTS first initiates the process by meticulously filtering EEG signals through a Dichotomous Filter Bank, structured in the fashion of a complete binary tree. Subsequently, it employs Riemann Tangent Space Mapping to extract salient EEG signal features within each sub-band. Finally, a lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss. To validate the efficacy, extensive experiments were conducted using DFBRTS on two well-established benchmark datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset and the OpenBMI dataset. The performance of DFBRTS was benchmarked against several state-of-the-art MI decoding methods, alongside other Riemannian geometry-based MI decoding approaches. Results: DFBRTS significantly outperforms other MI decoding algorithms on both datasets, achieving a remarkable classification accuracy of 78.16% for four-class and 71.58% for two-class hold-out classification, as compared to the existing benchmarks.Comment: 22 pages, 7 figure
    corecore