
60

Detecting Floating-Point Errors via Atomic Conditions

DAMING ZOU, Peking University, China

MUHAN ZENG, Peking University, China

YINGFEI XIONG∗, Peking University, China

ZHOULAI FU, IT University of Copenhagen, Denmark

LU ZHANG, Peking University, China

ZHENDONG SU, ETH Zurich, Switzerland

This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point

errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically

rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to

effectively guide the search for large floating-point errors. Compared with existing approaches, our work based

on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations

to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2)

atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly

effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library

functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis

significantly more practical. We expect the methodology and principles behind our approach to benefit other

floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction

of our work, we have made our implementation, evaluation data and results publicly available on GitHub at

https://github.com/FP-Analysis/atomic-condition.

CCS Concepts: · Software and its engineering→ General programming languages; Software testing

and debugging.

Additional Key Words and Phrases: floating-point error, atomic condition, testing, dynamic analysis

ACM Reference Format:

Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su. 2020. Detecting Floating-

Point Errors via Atomic Conditions. Proc. ACM Program. Lang. 4, POPL, Article 60 (January 2020), 27 pages.

https://doi.org/10.1145/3371128

∗Yingfei Xiong is the corresponding author.

Authors’ addresses: Daming Zou, Key Laboratory of High Confidence Software Technologies (Peking University), MoE,

China, Department of Computer Science and Technology, Peking University, Beijing, 100871, China, zoudm@pku.edu.cn;

Muhan Zeng, Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China, Department of

Computer Science and Technology, Peking University, Beijing, 100871, China, mhzeng@pku.edu.cn; Yingfei Xiong, Key

Laboratory of High Confidence Software Technologies (Peking University), MoE, China, Department of Computer Science

and Technology, Peking University, Beijing, 100871, China, xiongyf@pku.edu.cn; Zhoulai Fu, Department of Computer

Science, IT University of Copenhagen, Rued Langgaards Vej 7, Copenhagen, 2300, Denmark, zhfu@itu.dk; Lu Zhang, Key

Laboratory of High Confidence Software Technologies (Peking University), MoE, China, Department of Computer Science

and Technology, Peking University, Beijing, 100871, China, zhanglucs@pku.edu.cn; Zhendong Su, Department of Computer

Science, ETH Zurich, Universitatstrasse 6, Zurich, 8092, Switzerland, zhendong.su@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART60

https://doi.org/10.1145/3371128

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/286340896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/FP-Analysis/atomic-condition
https://doi.org/10.1145/3371128
https://doi.org/10.1145/3371128

60:2 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

1 INTRODUCTION

Floating-point computation is important in science, engineering, and finance applications [Sanchez-
Stern et al. 2018]. It is well-known that floating-point computation can be inaccurate due to the
finite representation of floating-point numbers, and inaccuracies can lead to catastrophes, such as
stock market disorder [Quinn 1983], incorrect election results [Weber-Wulff 1992], rocket launch
failure [Lions et al. 1996], and the loss of human lives [Skeel 1992]. Modern systems also suffer
from numerical inaccuracies, such as probabilistic programming systems [Dutta et al. 2018] and
deep learning libraries [Pham et al. 2019]. The increased complexity of modern systems makes it
even more important and challenging to detect floating-point errors.

Thus, it is critical to determine whether a floating-point program f̂ has significant errors with
respect to its mathematical oracle f , i.e., an idealized implementation in the exact real arithmetic.
This is a very challenging problem. As reported by Bao and Zhang [2013], only a small portion
among all possible inputs would lead to significant errors in a program’s final results. Several
approaches [Chiang et al. 2014; Yi et al. 2017; Zou et al. 2015] have been proposed to detect inputs
that trigger significant floating-point errors. All these approaches treat the floating-point program

as a black-box, heavily depend on the oracle (using high precision program f̂high to simulate the
mathematical oracle f), and apply heuristic methods to detect significant errors.

However, it is expensive to obtain the simulated oracle f̂high of an arbitrary program on an
arbitrary input (Section 5.5.1). The cost is twofold. First, the high-precision program is compu-
tationally expensive Ð even programs with quadruple precision (128 bits) are 100x slower than
double precision (64 bits) [Peter Larsson 2013]. The computational overhead further increases with
higher precisions. Second, realizing a high-precision implementation is also expensive in terms
of development cost as one cannot simply change all floating-point variables to high-precision
types, but needs expert knowledge to handle precision-specific operations and precision-related code
(e.g., hard-coded series expansions and hard-coded iterations). More concretely, precision-specific
operations are designed to work on a specific floating-point type [Wang et al. 2016], e.g., operations
only work on double precision (64 bits). Here is a simplified example from the exp function in the
GNU C Library:

1 double round(double x) {

2 double n = 6755399441055744.0; // n equals to 3 << 51

3 return (x + n) - n; }

The above code snippet rounds x to an integer and returns the result. The constant n is a łmagic
numberž and only works correctly for double precision (64 bits) floating-point numbers. The
decimal digits of (x + n) are rounded due to the limited precision, and the subtraction gives the
result of rounding x to an integer. Changing the precision of floating-point numbers, regardless
higher or lower, violates the semantics of precision-specific operations and leads to less accurate
results [Wang et al. 2016]. Here is another example of precision-related code: the hard-coded series
for calculating sin(x) near x = 0:

1 double sin(double x) {

2 if (x > -0.01 && x < 0.01) {

3 double y = x*x;

4 double c1 = -1.0 / 6.0;

5 double c2 = 1.0 / 120.0;

6 double c3 = -1.0 / 5040.0;

7 double sum = x*(1.0 + y*(c1 + y*(c2 + y*c3)));

8 return sum;

9 }

10 else { ... } }

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:3

The above code snippet calculates sin(x) for x near 0 based on the Taylor series of sin(x) at x = 0:

sin(x) = x − x3

6
+

x5

120
− x7

5040
+O(x8)

In this example of precision-related code, changing from floating-point to higher precision cannot
make the result more accurate, since the error termO(x8) always exists. Due to the lack of automated
tools, implementing a high quality high-precision oracle demands much expertise and effort, and
thus is expensive in terms of development cost.
Recognizing the aforementioned challenges, we introduce an approach that is fundamentally

different from existing black-box approaches. Our approach is based on analyzing and under-
standing how errors are introduced, propagated, and amplified during floating-point operations.
In particular, we adapt the concept of condition number [Higham 2002] from numerical analysis
to avoid estimating the oracle. Condition number measures how much the output value of the
function can change for a small change in the input arguments. Importantly, we focus on condition
numbers of a set of individual floating-point operations (such as +, −, sin(x), and log(x)), which
we term as atomic condition.

Our insight is that the atomic condition consists in a dominant factor for floating-point errors
from atomic operations, which we can leverage to find large errors of a complex floating-point
program. As such, we can express a floating-point error as εout = εinΓ+ µ where Γ is the atomic
condition and µ refers to an introduced error by atomic operations. The latter is guaranteed to be
small by the IEEE 754 standard [Zuras et al. 2008] and the GNU C reference manual [Loosemore
et al. 2019], because the atomic operations are carefully implemented and maintained by experts.
Based on this insight, we propose an approach based on atomic conditions and its realization,

Atomu, for detecting floating-point errors. The approach critically benefits from our insight:

• Native and Fast: Atomic conditions can be computed with normal precision floating-point
arithmetic, thus leading to high runtime efficiency.
• Effective: Atomic conditions provide accurate information on how errors are introduced
and amplified by atomic operations. This information can be leveraged to effectively guide
the search for error-triggering inputs.
• Oracle-free: Atomic conditions allow our approach to be independent of high-precision
implementations (i.e., oracles), thus making it generally applicable.
• Easy-to-debug: Atomic conditions help pinpoint where errors are significantly amplified by
atomic operations, and thus the root causes of significant errors.

At the high level, Atomu searches within the whole floating-point space for significant atomic
conditions. It returns a ranked list of test inputs that are highly likely to trigger large floating-point
errors, which developers can review and confirm the existence of significant errors. Thus, developers
only need to manually check a few inputs rather than attempting to construct a full oracle, which
is both much more expensive to construct and run for finding error-triggering inputs. Furthermore,
if oracles are available, our approach can leverage them and is fully automated end-to-end.

We evaluateAtomu on 88 functions from the popular GNU Scientific Library (GSL) to demonstrate
the effectiveness and runtime efficiency of Atomu. We find that Atomu is at least two orders of
magnitude faster than state-of-the-art approaches [Yi et al. 2019; Zou et al. 2015]. When oracles
are available (i.e., the same setting as all existing approaches), Atomu can detect significantly
more (40%) buggy functions with significant errors with neither false positives nor false negatives on
real-world evaluation subjects (see Section 5.3.2). For cases where oracles do not exist, none of the
state-of-the-art approaches is applicable, but Atomu can accurately identify 74% of buggy functions
by checking only the top-1 generated inputs and 95% by checking only the top-4 generated inputs.
In summary, we make the following main contributions in this paper:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:4 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

• We introduce the concept of atomic conditions and use it to explain how floating-point errors
are introduced, propagated, and amplified by atomic operations;
• We introduce and formulate the insight that atomic conditions are the dominant factors for
floating-point errors, and analyze the atomic conditions for a realistic collection of operations,
such as x + y, sin(x), log(x), and sqrt(x);
• We design and realize Atomu based on the insight of atomic conditions. In particular, Atomu
detects significant atomic conditions, which are highly related to significant errors in the
results. As Atomu does not rely on oracles, it is both generally applicable and efficient; and
• We extensively evaluate Atomu on functions from the widely-used GSL, and evaluation
results demonstrate that Atomu is orders of magnitude faster than the state-of-the-art and
significantly more effective Ð it reports more buggy functions (which are missed by state-of-
the-art approaches), and incurs neither false positives nor false negatives.

2 PRELIMINARIES

This section presents the necessary background on floating-point representations, error measure-
ment and analysis, errors in atomic operations, and their condition numbers.

2.1 Floating-Point Representation

Floating-point numbers approximate real numbers, and can only represent a finite subset of
the continuum of real numbers. According to the IEEE 754 standard [Zuras et al. 2008], the
representations of floating-point numbers consist of three parts: sign, exponent, and significand
(also called mantissa). Table 1 shows the format of the three parts in half, single, and double
precision floating-point numbers.

Table 1. IEEE 754 floating-point representation.

Sign Exponent (m) Significand (n)

Half Precision (16 bits) 1 5 10

Single Precision (32 bits) 1 8 23

Double Precision (64 bits) 1 11 52

The value of a floating-point number is inferred by the following rules: If all bits in the exponent
are 1, the floating-point representation denotes one of several special values: +∞, −∞, or NaN
(not-a-number). Otherwise, the value of a floating-point representation is depicted by

(−1)S ×T × 2E ,where
• S is the value of the sign bit, 0 for positive and 1 for negative;
• E = e − bias, where e is the biased exponent value withm bits, and bias = 2m−1 − 1;
• T = d0.d1d2 . . .dn , where d1d2 . . .dn are the n bits trailing significand field, and the leading
bit d0 is implicitly encoded in the biased exponent e .

2.2 Error Measurement

Since floating-point numbers (F) use finite bits to represent real numbers, they are inevitably
inaccurate for most real numbers. One consequence of the inaccuracy is rounding errors. We
represent the error between a real number x and a floating-point number x̂ as x = x̂ + η, where η
denotes the rounding error due to insufficient precision in the floating-point representation.

For a floating-point program P: ŷ = f̂ (x), ŷ ∈ F, rounding errors will be introduced and
accumulated for each floating-point operation, and the accumulated errors during the whole

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:5

computation may lead to inaccurate output results. There are two standard ways to measure

the error between the ideal mathematical result f (x) and the floating-point program result f̂ (x):
absolute error Errabs(f (x), f̂ (x)) and relative error Errrel(f (x), f̂ (x)), defined respectively as:

Errabs(f (x), f̂ (x)) =
���f (x) − f̂ (x)

��� Errrel(f (x), f̂ (x)) =
����� f (x) − f̂ (x)

f (x)

�����
Units in the last place (ULP) is a measure for the relative error [Loosemore et al. 2019; Zuras

et al. 2008]. For a real number z with the floating-point represented by floating-point as z =
(−1)S × d0.d1 . . .dn × 2E , ULP and the error based on ULP are represented by:

ULP(z) =
��d0.d1 . . .dn − (z/2E)��

2n−1
Errulp(f (x), f̂ (x)) =

����� f (x) − f̂ (x))
ULP(f (x))

�����
For double precision (64-bits) floating-point numbers, 1 ULP error (Errulp) corresponds to a

relative error between 1.1 × 10−16 and 2.2 × 10−16. For many applications this error is quite small,
e.g., considering the radius of our solar system, which is about 4.503 billion kilometers from the
Sun to Neptune, an ULP error of this distance is less than 1 millimeter.

Following the common practice [Goldberg 1991; Higham 2002], relative error Errrel is the prevalent
measurement for floating-point errors.

2.3 Errors in Floating-Point Atomic Operations

A floating-point program’s computation consists of a series of atomic operations, which include the
following elementary arithmetic and basic functions:

• Elementary arithmetic: +, −, ×, ÷.
• Basic functions:
ś Trigonometric functions: sin, cos, tan, asin, acos, atan, atan2;
ś Hyperbolic functions: sinh, cosh, tanh;
ś Exponential and logarithmic functions: exp, log, log10; and
ś Power functions: sqrt, pow.

According to the IEEE 754 standard [Zuras et al. 2008], elementary arithmetic operations are
guaranteed to produce accurately rounded results and their errors never exceed 1+1/1000 ULPs.
As for the basic functions, according to the GNU C Library reference manual [Loosemore et al.

2019], łIdeally the error for all functions is always less than 0.5 ULPs in round-to-nearest mode.ž This
manual also provides a list of known maximum errors for math functions. By checking the list, the
maximum errors in the aforementioned basic functions are 2 ULPs on the x86_64 architecture.
In summary, these two definitive documents stipulate: An atomic operation is guaranteed to be

accurate. The error introduced by atomic operations is usually less than 0.5 ULP and at most 2 ULPs.
It is also well-known that floating-point programs can be significantly inaccurate on specific

inputs [Panchekha et al. 2015; Zou et al. 2015]. For some functions from well-maintained and
widely-deployed numerical library, GNU Scientific Library, their relative errors may be larger than
0.1, corresponding to 7×1014 ULPs. Such large errors occur because, during the computation, errors
are not only introduced and accumulated, but also amplified by certain operations.

2.4 Condition Numbers

The Condition number is an important quantity in numerical analysis. It measures the inherent

stability of a mathematical function f and is independent of the implementation f̂ [Higham 2002].
Assuming an input x carries a small error ∆x , the following equation measures how much the

error ∆x will be amplified by the mathematical function f . Here we assume for simplicity that f is

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:6 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

twice continuously differentiable:

Errrel(f (x), f (x + ∆x)) =
���� f (x + ∆x) − f (x)

f (x)

����
=

���� f (x + ∆x) − f (x)
∆x

· ∆x

f (x)

����
=

����(f ′(x) + f ′′(x + θ∆x)
2!

∆x) · ∆x

f (x)

���� , θ ∈ (0, 1)
=

����∆xx
���� ·
����x f ′(x)f (x)

���� +O (
(∆x)2

)
= Errrel(x, x + ∆x) ·

����x f ′(x)f (x)

���� +O (
(∆x)2

)
where θ denotes a value ∈ (0, 1) and is the Lagrange form of the remainder in the Taylor Theo-
rem [Kline 1998]. This equation leads to the notion of a condition number [Higham 2002]:

Γf (x) =
����x f ′(x)f (x)

����
The condition number measures the relative change in the output for a given relative change in the
input, i.e., how much the relative error |∆x/x | carried by the input will be amplified in the output
by the mathematical function f .
Note that computing the condition number Γf (x) is commonly regarded as more difficult than

computing the original mathematical function f (x) [Higham 2002], since f ′(x) cannot be easily
obtained unless some quantities are already pre-calculated [Fu et al. 2015].

3 EXAMPLE

This section uses a concrete example to motivate and illustrate our approach. Via the given example,
we show how atomic operations affect the accuracies of results and how we use atomic conditions
to uncover and diagnose floating-point errors.

Let us consider a numerical program f̂ : foo(x) for calculating the value of a mathematical

function f defined in Figure 1. And the pseudocode for program f̂ : foo(x) is listed in the first
column of the table in Figure 1. Note that the limit of f (x), as x approaches 0, is 1/2.
Naturally, the programmer would expect the program f̂ : foo(x) to produce an accurate result.

However, when the input is 10−7, which is a small number close to 0, the result of f̂ becomes

significantly inaccurate, i.e., f̂ (10−7) ≈ 0.4996. The accurate result of f , which we use the high-

precision program f̂high to simulate, is f̂high(10−7) = 0.499999999999999583.
To illustrate how errors are introduced and amplified by atomic operations, let us inspect the

intermediate variables one by one. Figure 1 shows the operands, atomic conditions, results, and
the relative errors of the four operations. The inaccurate digits in the operands and results are
highlighted in bold (e.g., 4.99600361081320443e-15). Each operation (1) introduces a rounding
error around 1 ULP as discussed in Section 2.3, and (2) amplifies the existing error in operand(s)
with a factor of its atomic condition as discussed in Section 2.4.

Note that f̂high is only used to calculate the relative error; computing the result and atomic
condition does not need the high-precision program.

• op 1: v1 = cos(x).
ś Atomic condition formula: Γcos(x) = |x · tan(x)|.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:7

Example Function: f (x) = 1 − cos(x)
x2

lim
x→0

f (x) = 1

2

Pseudocode

of f̂ : foo(x)
Operand(s)

Atomic

condition Γop
Operation result in f̂

Relative

error in

operation

result

foo(double x):

v1=cos(x) 1.0e-7 1.0000e-14 9.99999999999995004e-01 3.9964e-18

v2=1.0-v1
1.0,

9.99999999999995004e-01

2.0016e+14,

2.0016e+14
4.99600361081320443e-15 7.9928e-04

v3=x*x
1.0e-7,

1.0e-7

1,

1
9.99999999999999841e-15 6.8449e-17

v4=v2/v3
4.99600361081320443e-15,

9.99999999999999841e-15

1,

1
4.99600361081320499e-01 7.9928e-04

return v4

Fig. 1. An Example of mathematical function f and error propagation in atomic operations of f̂ : foo(x).

ś Amplified error : Since x , the input to the program, is treated as error-free [Loosemore et al.
2019], this operation will not amplify the error in its operand by atomic condition.

ś Introduced error : 3.9964 × 10−18, which is smaller than 1 ULP.
• op 2: v2 = 1.0 - v1.
ś Atomic condition formula: Γ−(v1) =

��− v1
1.0−v1

��
= 2.0016 × 1014.

ś Amplified error : The operand v1 contains a quite small relative error 3.9964×10−18. However,
since the atomic condition is very large, this relative error will be amplified to 7.9928× 10−4
in the result.

ś Introduced error : Around 1 ULP, which can be omitted due to the large amplified error.
• op 3: v3 = x * x.
ś Atomic condition formula: Γ×(x) = 1. The atomic condition of multiplication is always equal
to 1, which means that the error in its operands will simply pass to the result without being
amplified or reduced.

ś Amplified error : Since x is error-free, there is no amplified error in the result.
ś Introduced error : 6.8449 × 10−17, which is smaller than 1 ULP.
• op 4: v4 = v2 / v3.
ś Atomic condition formula: Γ÷(v2) = Γ÷(v3)=1. The atomic condition of division is always 1.
ś Amplified error : The existing error in v2 is passed (amplified by 1) to the result as a relative
error 7.9928 × 10−4. The amplified error from v3 is much smaller and can be omitted.

ś Introduced error : Around 1 ULP, which can be omitted due to the large amplified error.

This example illustrates that

• A significant error in the result is mostly caused by one or multiple significant amplifications
by atomic operations;
• Atomic condition can reveal/measure whether an atomic operation will lead to significant
amplifications; and
• Computing atomic conditions is low-cost, since the formulae for atomic conditions can be
pre-calculated, and there is no need for high-precision implementations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:8 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

Source Code

Instrumentation
& Compilation

Instrumented
Program

Test Inputs
1.234e+5

9.739e-6

...

Gathering Runtime
Information

Atomic
Conditions

Searching for
Maximum Atomic
Condition on Each

Operation

Error
Triggering

Inputs

Fig. 2. Overview of atomic condition-driven error analysis.

4 ERROR ANALYSIS VIA ATOMIC CONDITIONS

This section presents the technical details of our approach. We start by formulating the problem
and giving an overview of our approach (Section 4.1). Next, we analyze the propagation of errors
via atomic conditions, describe the pre-calculated formulae for atomic conditions and introduce
the notion of danger zones (Section 4.2). We then discuss our search framework and algorithm
(Section 4.3) and how to rank/prioritize results (Section 4.4).

Section 4.2 provides the theoretical underpinning for using atomic conditions to indicate signifi-
cant floating-point errors, while Section 4.3 and Section 4.4 concern the practical aspects of using
atomic conditions for detecting such errors.

4.1 Problem Definition and Approach Overview

Given a floating-point program P: ŷ = f̂ (x), ŷ ∈ F, our goal is to find a set of inputs x to P that leads
to large floating-point errors, which we cast as a search problem. The search space is represented
by all possible values of x within the domain of P. The domain of P could either be explicit, such
as described in its documentation, or implicit, which may only be inferred through exceptions or
status variables.

For the search problem, we need to specify the criterion which critically dictates what inputs are
of interest and how the search can be guided. For our problem setting, the criterion of an input x in
the search space should determine how likely x is to lead a significant error. A natural method to

define the criterion is to directly use the relative error Errrel(f (x), f̂ (x)) [Zou et al. 2015]. However,

as discussed in Section 5.5.1, f (x) is only conceptual and the high-precision results f̂high(x) are
needed to simulate/approximate f (x). There are technical and practical disadvantages of adopting

a high-precision f̂high (Section 1). Thus, an alternative criterion is needed to guide our search
procedure, which Section 4.2 motivates and introduces.
Figure 2 shows a high-level overview of our approach. It instruments the source code of a

floating-point program to emit runtime information, which is used to compute the atomic condition
on each atomic operation. The search algorithm iteratively generates inputs and computes the
atomic conditions to find inputs that trigger large atomic conditions on each atomic operation.

4.2 Error Propagation, Atomic Conditions and Danger Zones

We analyze the program P in a white-box manner, where we assume its source code is available. The
program consists of atomic operations as defined in Section 2.3. We define and call the condition

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:9

number (Section 2.4) of an atomic operation as its atomic condition. For brevity of exposition, we
consider a univariate operation z = op(x):
• x is the input, which carries a relative error εx ,
• Γop(x) is the atomic condition of op(x),
• z is the output, which carries an unknown relative error εz ,
• µop(x) is the introduced error as discussed in Section 2.3.

Based on the discussion in Section 2.4, the atomic operation op amplifies the error εx with a
factor of atomic condition Γop(x), and the amplified error is thus εx Γop(x). Also as discussed in
Section 2.3, the atomic operation also introduces a small error around 1 ULP, which is µop(x). The
error εz can be presented as:

εz = εx Γop(x) + µop(x) (1)

Equation (1) can be easily generalized to multivariate operations z = op(x,y) such as z = x + y:

εz = εx Γop,x(x,y) + εyΓop,y(x,y) + µop(x,y) (2)

where Γop,x(x,y) and Γop,y(x,y) are based on the partial derivatives with respect to x and y.
We first use a small example to demonstrate the propagation model based on Equations (1)

and (2). Then, we discuss the generalized propagation model. Consider the following function bar:

1 double bar(double x) {

2 double v1,v2,v3; // intermediate variables

3 double y; // return value

4 v1 = f1(x);

5 v2 = f2(v1);

6 v3 = f3(v1,v2);

7 y = f4(v3);

8 return y; }

We assume that the four function invocations, namely f1, f2, f3, and f4, are atomic operations
(e.g., log, sin, +, sqrt, etc.). Following Equations (1) and (2), we have the following equations, where,
for simplicity, the parameters of Γop and µop are implicit:

εx = µinit

εv1 = εx Γf1 + µf1

εv2 = εv1Γf2 + µf2

εv3 = εv1Γf3 ,v1 + εv2Γf3 ,v2 + µf3

εy = εv3Γf4 + µf4

After expansion, we obtain the following:

εy =

x→v1→v3→y︷ ︸︸ ︷
µinitΓf1Γf3 ,v1Γf4 +

x→v1→v2→v3→y︷ ︸︸ ︷
µinitΓf1Γf2Γf3 ,v2Γf4

+

v1→v3→y︷ ︸︸ ︷
µf1Γf3 ,v1Γf4 +

v1→v2→v3→y︷ ︸︸ ︷
µf1Γf2Γf3 ,v2Γf4

+

v2→v3→y︷ ︸︸ ︷
µf2Γf3 ,v2Γf4 +

v3→y︷︸︸︷
µf3Γf4 +

y︷︸︸︷
µf4

From the above equation, we observe that each of the introduced error terms µ is amplified by
the atomic condition Γop through a data-flow path to the result. For example, there are two data-flow

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:10 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

paths from x to y: (1) x → v1→ v3→ y, corresponding to the first term of the equation; and (2)
x → v1→ v2→ v3→ y, corresponding to the second term of the equation.

More generally, with the following definitions and notations

• P is a floating-point program.
• E is a set of atomic operations op in P , as edges;
• V is a set of floating-point variables v in P , as vertices;
• G : ⟨V , E⟩ is a dynamic data-flow graph with entry vertex x and exit vertex y. For an executed
atomic operation γ = op(α), there is an edge op : α → γ . For an executed atomic operation
γ = op(α, β), there are two edges opα : α → γ and opβ : β → γ ;

• m = [α, β, . . . ,y] is an executed data-flow path inG from variable α to result variable y. Note
that there may exist multiple paths from the same variable α to y;
• M(α) is the set of all executed data-flow paths from α to y; and
• res(op) : op→ γ is the mapping from an atomic operation op to its result γ .

The propagation model of error εy can be formalized as

εy =
∑
e ∈E

©­«
µe ·

∑
m∈M (res(e))

∏
op∈m

Γop
ª®¬

(3)

Equation (3) highlights our key insight: The error in result εy is determined only by the atomic
condition Γop and the introduced error µe . Since the introduced error is guaranteed to be small (at
most 2 ULPs, Section 2.3), atomic conditions are the dominant factors of floating-point errors.
As we discussed in Section 2.4, computing the condition number Γf (x) is commonly regarded

as more difficult than computing the original function f (x) [Higham 2002], since f ′(x) cannot be
easily obtained unless certain quantities have already been pre-calculated [Fu et al. 2015].

Rather, we focus on the atomic operations, all of which are basic mathematical functions. These
atomic operations are all twice continuously differentiable, and their derivatives have analytic
expressions. Thus, we can use pre-calculated formulae to compute the atomic conditions, which
reduces computational effort.
Table 2 lists the atomic condition formulae for all atomic operations described in Section 2.3.

We define the danger zone to be the domain for x (or y) that triggers a significantly large atomic
condition. By analyzing the maximal values of the atomic condition formulae, we classify the
operations into two categories:

• Potentially unstable operations: +, −, sin, cos, tan, arcsin, arccos, sinh1, cosh1, exp1,
pow2, log, log10. For each of these operations, if its operator falls into its danger zone, the
atomic condition becomes significantly large (Γop → +∞), and any slight error in the operator
will be amplified to a tremendous inaccuracy in the operation’s result.
• Stable operations: ×, ÷, arctan, arctan2, tanh, sqrt. For each of these operations, its atomic
condition is always no greater than 1, which means that the error in the operator will not
be amplified in the operation’s result. This is determined by the mathematical formulae of
atomic conditions. For example, consider the atomic condition of tanh(x):

Γtanh(x) =


��� x
sinh(x) cosh(x)

��� < 1 if x ∈ R : x , 0,

limx→0

��� x
sinh(x) cosh(x)

��� = 1 if x = 0.

1For a 64-bit floating-point program, the domain (without triggering overflow or underflow) is (-709.78, 709.78) for

exp(x), and (-710.47, 710.47) for sinh(x) and cosh(x). The range of domain restricts the atomic condition Γexp, Γsinh, Γcosh

from becoming extremely large as other potentially unstable operations.
2The power function xy is similar with the exp(x) function that the domain for y is limited. The condition of this

function has been discussed in previous work [Harrison 2009].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:11

Table 2. Pre-calculated atomic condition formulae.

Operation (op) Atomic Condition (Γop) Danger Zone

op(x,y) = x + y Γ+,x (x,y) =
��� x
x+y

���, Γ+,y(x,y) = ��� y
x+y

��� x ≈ −y

op(x,y) = x − y Γ−,x (x,y) =
��� x
x−y

���, Γ−,y(x,y) = ���− y
x−y

��� x ≈ y
op(x,y) = x × y Γ×,x (x,y) = Γ×,y(x,y) = 1 -

op(x,y) = x ÷ y Γ÷,x (x,y) = Γ÷,y(x,y) = 1 -

op(x) = sin(x) Γsin(x) = |x · cot(x)| x → nπ , n ∈ Z
op(x) = cos(x) Γcos(x) = |x · tan(x)| x → nπ + π

2 , n ∈ Z
op(x) = tan(x) Γtan(x) =

��� x
sin(x) cos(x)

��� x → nπ
2 , n ∈ Z

op(x) = arcsin(x) Γarcsin(x) =
���� x√

1−x 2 ·arcsin(x)

���� x → −1+, x → 1−

op(x) = arccos(x) Γarccos(x) =
����− x√

1−x 2 ·arccos(x)

���� x → −1+, x → 1−

op(x) = arctan(x) Γarctan(x) =
��� x
(x 2
+1)·arctan(x)

��� -

op(x,y) = arctan(yx) Γatan2,x (x,y) = Γatan2,y(x,y) =
���� xy

(x 2
+y2) arctan(yx)

���� -

op(x) = sinh(x) Γsinh(x) = |x · coth(x)| x → ±∞
op(x) = cosh(x) Γcosh(x) = |x · tanh(x)| x → ±∞
op(x) = tanh(x) Γtanh(x) =

��� x
sinh(x) cosh(x)

��� -

op(x) = exp(x) Γexp(x) = |x | x → ±∞
op(x) = log(x) Γlog(x) =

��� 1
log x

��� x → 1

op(x) = log10(x) Γlog10(x) =
��� 1
log x

��� x → 1

op(x) =
√
x Γsqrt (x) = 0.5 -

op(x,y) = xy Γpow,x (x,y) = |y |, Γpow,y(x,y) =
��y log(x)�� x → 0+, y → ±∞

The range of Γtanh(x) is {Γtanh ∈ R : 0 < Γtanh ≤ 1}. And the atomic conditions of other stable
operations are also not greater than 1.

4.3 Atomic Condition-Guided Search

As stated earlier, we adopt a search-based approach, and the aim is to find inputs that trigger the
largest atomic condition on each atomic operation. This section describes the technical details of
our search algorithm. It is designed as a pluggable component of our overall approach, i.e., other
search algorithms could also be easily adopted. Our search algorithm operates as follows:

(1) Generate a set of initial test inputs;
(2) Invoke the program under analysis with the test inputs;
(3) Gather the atomic conditions on the atomic operations;
(4) Generate new test inputs based on the computed atomic conditions;
(5) Repeat steps (2) to (4) until a termination criterion is reached; and
(6) Report largest atomic condition found for each atomic operation and corresponding input.

In this paper, we propose an evolutionary algorithm (EA) for realizing the search module.
Evolutionary algorithms [Bäck et al. 1999] simulate the process of natural selection for solving
optimization problems. In EA, each candidate solution is called an individual, and there is a fitness
function that determines the quality of the solutions. In our search module, the individual is defined

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:12 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

as a floating-point test input, and the fitness function is defined as the atomic condition on an
atomic operation.

Algorithm 1: EvolutionSearch

Input: An instrumented floating-point program P, the size of initialization initSize, the size of

iterations on each operation iterSize

Output: A set of test inputs X = {x1, x2, . . . , xn }, corresponding to unstable operations

{op1,op2, . . . ,opn }
1 X ← ∅
2 initTests← generateInitTests(initSize)

3 for test in initTests do

4 computeAllAtomicConditions(test)

5 for opi in P do

6 if isPotentialUnstable(opi) then

7 Ti ← initTests

8 for j ← 0 to iterSize do

9 x ← selectTest(Ti ,opi)

10 x’← mutateTest(x, j)

11 ac’← computeAtomicCondition(opi , x’)

12 Ti .append({x’, ac’})

13 {xi , aci }← bestOf(Ti)

14 if aci > unstableThreshold then

15 X .append(xi)

16 return X

A high-level outline of our evolutionary algorithm is shown in Algorithm 1. There are three main
components of the proposed algorithm: initialization, selection, and mutation. Next, we explain the
details of these components.

Initialization. First, the algorithm generates, uniformly at random in the space of floating-point
numbers, a set of floating-point inputs as candidates (line 2). Then, it executes the instrumented
program on each input and records the atomic conditions on all the executed operations (lines 3-4).
The atomic conditions are used in the subsequent steps.

As mentioned in Section 4.2, the atomic operations can be classified into two categories: poten-
tially unstable operations and stable operations. Our search algorithm iteratively focuses on each
potentially unstable operation (opi) (lines 5-6), and searches for inputs that maximize the atomic
condition on opi (lines 8-12).
During each iteration, the algorithm selects a test input (line 9), mutates it (line 10), computes

the atomic condition Γopi (line 11), and puts it back to the pool of test inputs (line 12). After the
iterations on opi , the algorithm checks whether the largest atomic condition Γopi exceeds the
unstable threshold (line 13-14). If yes, the corresponding input xi is added to the result set (line 15).
Finally, after looping over all potentially unstable operations, the result set X is returned (line 16).
Suppose thatX contains n test inputs {x1, x2, . . . , xn}. Each xi corresponds to an unstable operation
opi , i.e., the atomic condition Γopi exceeds the unstable threshold on the execution with input xi .

Selection. This component is one of the main steps in evolutionary algorithms. Its primary
objective is to favor good test inputs among all candidate inputs. We utilize a rank-based selection

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:13

method [Baker 1985], which sorts candidates based on their fitness values (i.e., atomic conditions
for our approach).

Next, we assign a selection probability to each candidate based on its rank. To this end, we use a
geometric distribution to assign probabilities [Whitley 1989]. Suppose that a test input tr has the
r -th largest atomic condition on opi over allM candidates, e.g., the rank of the best candidate is 1,
the probability of selecting tr is defined as

P(tr) =
α(1 − α)r−1∑M
j=1 α(1 − α)j−1

where α is the parameter of the geometric distribution. This distribution arises if the selection acts
as a result of independent Bernoulli trials over the test inputs in rank order. For example, assuming
that M = 10,α = 0.2, we have numerators 20%, 16%, 12.8%, . . . , 2.7% following the geometric
distribution, and then the probabilities are normalized to 22.4%, 17.9%, 14.3%, . . . , 3% to satisfy∑(P(tr)) = 1.

Mutation. This is another main step in evolutionary algorithms. As the selection step favors
good existing candidates, the mutation step generates new candidates based on the selected ones.
The objective of mutation is to search among the existing good candidates to obtain a better one.
Our approach adopts a common mutation method, which adds a standard Gaussian random variable
to the selected candidate t [Bäck et al. 1999]

t ′ = t + t · N(0,σj)
where j is the iteration counter and σj the standard deviation of the Gaussian distribution. The
parameter σj controls the search size of t ’s neighbor. For example, assuming that t = 1.2, t ′ may
be mutated to 1.3 on large σj , and may be mutated to 1.2003 on small σj . To make the mutation
fine-grained and adaptable, the component σj is tapered off during the iterations

σj = σ
(N−j)/N
st · σ j/N

end

where N is the number of total iterations, σst and σend two parameters. For example, assuming that
σst = 10−1,σend = 10−7, and N = 100, we have σ0 = 10−1 in the first iteration, σ50 = 10−4 in the
median iteration, and σ100 = 10−7 in the final iteration.

4.4 Input Ranking

Our search algorithm returns a set of inputsX = {x1, x2, . . . , xn} that trigger large atomic conditions.
However, although likely, it is not guaranteed that they lead to large relative errors. If a high-quality

high-precision program f̂high exists, it can act as the oracle to help compute the relative errors on
these inputs. Since the number of returned inputs is typically small, validating these inputs with

f̂high is computationally cheap.

On the other hand, as discussed earlier, f̂high is often unavailable. We thus propose a method to
prioritize the returned inputs, in particular, to rank the most suspicious inputs highly. Let us recall
the example error propagation in Section 4.2. The equation of the error in result (εy) is

εy =µinitΓf1Γf3 ,v1Γf4 + µinitΓf1Γf2Γf3 ,v2Γf4

+ µf1Γf3 ,v1Γf4 + µf1Γf2Γf3 ,v2Γf4

+ µf2Γf3 ,v2Γf4 + µf3Γf4 + µf4

From the above equation, we can observe that the atomic conditions in the latter operations
have more dominance on the final result. For example, Γf4 shows in every term except the last term
µf4 , which means a significantly large Γf4 is more likely to lead to a significant error εy . It also can

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:14 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

be explained based on our general model in Equation (3): the latter operations are contained in
more data-flow paths, leading to more dominance on the error εy .
Thus, we propose an intuitive, effective method to prioritize the results. For a test input xi

and its corresponding unstable operation opi , stepi is computed as the number of floating-point
operations from opi to the return statement in the execution of xi . Then, we prioritize the test
inputs {x1, x2, . . . , xn} Ð the smaller stepi , the higher rank of xi .

5 EVALUATION

This section details the realization and evaluation of our technique. We show that our approach
drastically outperforms the state-of-the-art on real-world code: (1) It is effective and precise Ð it
detects more functions with large floating-point errors without false positives nor false negatives;
and (2) it is highly scalable Ð it is several orders of magnitude faster than the state-of-the-art.

5.1 Implementation

We realize our approach as the toolAtomu. It instruments a given program for obtaining its runtime
information to help compute the atomic conditions. The instrumentation is done in three steps
(assuming that the program under analysis is sample.c):

(1) Source code→ LLVM IR: This step compiles the floating-point program sample.c to the LLVM
Intermediate Representation (IR) [Lattner and Adve 2004]. For this purpose, we use Clang3

for C/C++ programs;
(2) Instrument LLVM IR: This step of Atomu is implemented as an LLVM pass to perform the

needed instrumentation. It scans the LLVM IR for sample.c instruction by instruction. Once
it encounters one of the floating-point atomic operations, it injects a function call to an
external handler by passing the type of the operation, the value(s) of its operand(s), and the
instruction ID; and

(3) LLVM IR→ instrumented library: This step compiles the instrumented LLVM IR to an instru-
mented library. Any client program, such as our search module, can retrieve the runtime
information of sample.c by invoking its instrumented version from step (2).

Since Atomu is dynamic and needs to instrument only the floating-point operations and focuses
on critical atomic conditions, all remaining program constructs Ð such as loops, conditionals,
casting, and I/O Ð do not need any specific treatments in our implementation, which is a distinct
novelty and strength of our approach.
We have implemented in C++ the evolution algorithm (EA) as described in Section 4.3. The

random variables used in the EA module are generated by uniform_real_distribution and
geometric_distribution from C++’s random number generation facilities (i.e., the <random>

library). We set the initialization size to 100,000 and the iteration size to 10,000 on each potentially
unstable operation. The σst and σend in the mutation step are set to 10−2 and 10−13, respectively.
These parameters are easily configurable.

5.2 Experimental Setup

5.2.1 Subjects. We conduct a set of experiments to evaluate Atomu on subjects chosen from the
GNU Scientific Library (GSL),4 version 2.5. GSL is an open-source numerical library that provides a
wide range of mathematical routines such as random number generators, special functions and
least-squares fitting. GSL has been frequently used as test subjects in previous research [Barr et al.

3https://clang.llvm.org/
4https://www.gnu.org/software/gsl/

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

https://clang.llvm.org/
https://www.gnu.org/software/gsl/

Detecting Floating-Point Errors via Atomic Conditions 60:15

Table 3. Size of GSL functions and Atomu results.

Size on GSL Functions FP Operations

Potentially

Unstable

Operations

Unstable

Operations

Atomu

Results

Average on 107 functions 87.8 38.7 11.1 11.1

Average on 88 functions 90.4 39.8 11.8 11.8

Total on 107 functions 9392 4141 1192 1192

Total on 88 functions 7957 3948 1037 1037

2013; Yi et al. 2019; Zou et al. 2015]. This version of GSL contains 154 functions with all floating-
point parameters and return values. 107 (69%) of these 154 functions are univariate functions, which
we choose as our experimental subjects. All the parameters and the return values of these 107
functions are of double precision (64 bits). Note that we conducted our experiments on univariate
functions following existing work [Yi et al. 2019] for direct comparisons. Our approach is not
limited to univariate functions and can be easily applied to multivariate functions by changing the
search module’s parameters.

5.2.2 Oracles. Although Atomu does not require oracles f (or high-precision results f̂high) during
its complete process, we still need to know the accurate output values to validate the effectiveness
of Atomu. To this end, we utilize mpmath [Johansson et al. 2018] to compute the oracles as the
mpmath library supports floating-point arithmetic with arbitrary precision. Note that mpmath only
supports a portion of the 107 functions and does so in two ways:

• Direct support: For example, łgsl_sf_bessel_I0(x)ž corresponds to łbesseli(0, x)ž in mpmath.
• Indirect support via reimplementation: For GSL functions without direct support, we reimple-
ment them based on mpmath following their definitions from the GSL documentation. For
example, łgsl_sf_bessel_K0_scaled(x)ž in GSL is implemented by łbesselk(0, x) × exp(x)ž in
mpmath, where exp(x) is the scale term.

In total, 88 of the 107 functions are supported by mpmath, which we use as oracles.

5.2.3 Error Measurements and Significant Error. As discussed in Section 2.2, our evaluation uses
relative error Errrel as the error measurement, which is the prevalent measurement for floating-point
errors [Goldberg 1991; Higham 2002]. Following existing work [Zou et al. 2015], we define a relative
error greater than 0.1% (Errrel > 10−3) as significant.
All our experiments are conducted on a desktop running Ubuntu 18.04 LTS with an Intel Core

i7-8700 @ 3.20 GHz CPU and 16GB RAM.

5.3 Evaluation Results

This section presents evaluation results to show our approach’s strong effectiveness and scalability
over the state-of-the-art. In particular, we address the following research questions (RQs):

• RQ1: How effective is Atomu in detecting unstable operations?
• RQ2: How effective is Atomu in detecting functions with significant errors?
• RQ3: How scalable is Atomu?

5.3.1 RQ1: How Effective is Atomu in Detecting Unstable Operations? Table 3 shows the average
size of GSL functions and the average size of results detected by Atomu, both in terms of the
number of floating-point (FP) operations. The FP Operations column shows the average number of
floating-point operations in the studied GSL functions. The Potentially Unstable Operations column

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:16 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

Maximum

Detected Error

Number of

Functions

Errrel ∈ [0, 10−15) 31

Errrel ∈ [10−15, 10−12) 13

Errrel ∈ [10−12, 10−9) 2

Errrel ∈ [10−9, 10−6) 0

Errrel ∈ [10−6, 10−3) 0

Insignificant Error 46

Errrel ∈ [10−3, 1) 29

Errrel ∈ [1, 103) 3

Errrel ∈ [103, +∞) 10

Significant Error 42

Total 88

Fig. 3. Distribution of the largest detected relative errors on the 88 GSL functions.

shows that about 44% (38.7/87.8 ≈ 39.8/90.4 ≈ 0.44) of FP operations are potentially unstable (e.g.,
+,−, sin, log, . . . , as we defined in Section 4.2). TheUnstable Operations column shows the number of
FP operations that are found to be unstable, i.e., triggering an atomic condition greater than 10 in at
least one execution during the whole search process. Since for each unstable operation,Atomu keeps
one input that triggers the largest atomic condition on it, the size of Atomu results is always the
same as the number of unstable operations. Our data show that 13% (11.1/87.8 ≈ 11.8/90.4 ≈ 0.13)
of the FP operations are indeed unstable.

5.3.2 RQ2: How Effective is Atomu in Detecting Functions with Significant Errors? Although Atomu

can be run on all the 107 subject functions, since the oracles from mpmath are only available on 88
functions, we answer this RQ with results for the 88 functions.

Figure 3 shows the maximum detected errors on the 88 GSL functions. We observe that there are
two peaks in this histogram, and it is easy to distinguish functions from these two peaks because
there is a large gap from 10−9 to 10−3 with no function in it. The peak to the right consists of
functions with Errrel > 10−3, thus, functions with significant errors, while the peak to the left
consists of functions with small errors.

Figure 3 shows the detailed number of this distribution. We follow the definition in Section 5.2.3
that Errrel > 10−3 is defined as a significant error. We find that:

Atomu detects that 42 (47.7%) of the 88 GSL functions have significant errors.

The state-of-the-art technique DEMC [Yi et al. 2019] uses high-precision results f̂high to guide its
search. The dataset for DEMC contains 49 GSL functions that are a subset of the 88 functions that
we use as subjects. DEMC detects 20 among the 49 functions to have significant errors. Thus, we
can directly compare Atomu and DEMC on these 49 functions. Since the reported data by DEMC
uses ErrBits but not relative error (Errrel), we re-calculate the ErrBits on our results.
Our results show that on the 49 functions dataset, Atomu can detect 28 functions to have

significant errors, while DEMC only detects 20, a subset of the 28 detected by Atomu. Thus, the
results show that Atomu is significantly more effective than DEMC in detecting significant errors.
More details of the results are shown in Table 4 and Table 5.

To control the variance in running time, we repeated the same set of experiments 10 times and
computed the standard deviation of Atomu’s running time on each function. The average standard

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:17

Table 4. Data on the 42 functions with significant errors.

GSL Function Name Error Triggering Input
Detected

Relative Error

Time on

Atomu

(seconds)

Significant

Error Detected

by DEMC?

Time on

DEMC

(seconds)

gsl_sf_airy_Ai -4.042852549222488e+11 6.64E+03 0.94 ✓ 112.35

gsl_sf_airy_Bi -7.237129918123468e+11 2.89E+09 0.88 ✓ 91.37

gsl_sf_airy_Ai_scaled -3.073966210399579e+11 1.40E+04 0.95 -

gsl_sf_airy_Bi_scaled -8.002750158072251e+11 4.91E+09 0.93 -

gsl_sf_airy_Ai_deriv -1.018792971647468e+00 3.70E-03 0.37 ✓ 203.47

gsl_sf_airy_Bi_deriv -2.294439682614124e+00 2.20E-01 0.37 ✓ 188.82

gsl_sf_airy_Ai_deriv_scaled -1.018792971647467e+00 1.09E-02 0.36 -

gsl_sf_airy_Bi_deriv_scaled -2.294439682614120e+00 1.26E-02 0.39 -

gsl_sf_bessel_J0 2.404825557695774e+00 5.97E-02 0.68 ✓ 2079.15

gsl_sf_bessel_J1 3.831705970207514e+00 1.79E-01 0.72 ✓ 1777.88

gsl_sf_bessel_Y0 3.957678419314854e+00 7.93E-02 0.64 ✓ 325.22

gsl_sf_bessel_Y1 2.197141326031017e+00 1.04E-01 0.69 ✓ 753.16

gsl_sf_bessel_j1 -7.725251836937709e+00 2.17E-03 0.07 -

gsl_sf_bessel_j2 9.095011330476359e+00 4.99E-03 0.07 -

gsl_sf_bessel_y0 2.585919463588284e+17 1.72E+04 0.22 -

gsl_sf_bessel_y1 9.361876298934626e+16 9.58E+03 0.56 -

gsl_sf_bessel_y2 1.586407411088372e+17 1.46E+04 0.60 -

gsl_sf_clausen 1.252935780352301e+14 9.36E-01 0.25 ✓ 471.55

gsl_sf_dilog 1.259517036984501e+01 5.52E-01 0.27 ✗ 459.64

gsl_sf_expint_E1 -3.725074107813663e-01 2.92E-02 0.43 ✗ 96.18

gsl_sf_expint_E2 -1.347155251069168e+00 2.40E+00 0.49 ✗ 165.38

gsl_sf_expint_E1_scaled -3.725074107813663e-01 2.92E-02 0.63 -

gsl_sf_expint_E2_scaled -2.709975303391678e+228 3.01E+212 0.62 -

gsl_sf_expint_Ei 3.725074107813668e-01 1.11E-02 0.44 ✓ 112.66

gsl_sf_expint_Ei_scaled 3.725074107813666e-01 1.41E-01 0.63 -

gsl_sf_Chi 5.238225713898647e-01 1.28E-01 0.80 ✓ 199.98

gsl_sf_Ci 2.311778262696607e+17 5.74E+02 1.46 ✓ 84.80

gsl_sf_lngamma -2.457024738220797e+00 3.06E-01 0.32 ✗ 106.87

gsl_sf_lambert_W0 1.666385643189201e-41 3.11E-01 0.11 ✗ 309.05

gsl_sf_lambert_Wm1 1.287978304826439e-121 1.00E+00 0.12 -

gsl_sf_legendre_P2 -5.773502691896254e-01 3.81E-02 0.02 ✓ 1168.49

gsl_sf_legendre_P3 7.745966692414830e-01 3.72E-02 0.02 ✓ 908.69

gsl_sf_legendre_Q1 8.335565596009644e-01 1.28E-02 0.04 ✓ 995.65

gsl_sf_psi -6.678418213073426e+00 9.89E-01 0.60 ✓ 187.66

gsl_sf_psi_1 -4.799999999999998e+01 1.40E-01 0.33 ✓ 165.71

gsl_sf_sin -5.037566598712291e+17 2.90E+09 0.26 ✗ 135.14

gsl_sf_cos -1.511080519199221e+17 7.96E+03 0.26 ✗ 130.22

gsl_sf_sinc 3.050995817918706e+15 1.00E+00 0.37 ✗ 149.43

gsl_sf_lnsinh 8.813735870195427e-01 2.64E-01 0.03 ✓ 236.93

gsl_sf_zeta -9.999999999999984e+00 1.29E-02 0.98 ✓ 584.12

gsl_sf_zetam1 -1.699999999999999e+02 2.26E-03 1.11 -

gsl_sf_eta -9.999999999999989e+00 1.53E-02 1.05 ✓ 668.39

Average Time on Functions with Significant Errors 0.5 459.6

Average Time on All Supported Functions 0.34 585.8

derivation is 0.0060, the maximum one is 0.042, and the minimum one is 0.0007, indicating that
Atomu’s running time on each function is quite stable and does not vary significantly.

We also notice that the average ErrBits on significant error is 54.2 for Atomu and 57.5 for DEMC.
The reason is that DEMC is guided by ErrBits, while Atomu searches for significant relative error

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:18 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

Table 5. Data on the 46 functions without significant errors.

GSL Function Name
Detected

Relative Error

Time on

Atomu

(seconds)

Significant

Error Detected

by DEMC?

Time on

DEMC

(seconds)

gsl_sf_bessel_I0 2.37E-16 0.16 ✗ 191.23

gsl_sf_bessel_I1 2.21E-16 0.17 ✗ 189.81

gsl_sf_bessel_I0_scaled 1.92E-16 0.29 -

gsl_sf_bessel_I1_scaled 0.00E+00 0.29 -

gsl_sf_bessel_K0 2.64E-16 0.19 ✗ 3336.70

gsl_sf_bessel_K1 1.70E-16 0.20 ✗ 7905.00

gsl_sf_bessel_K0_scaled 1.44E-16 0.18 -

gsl_sf_bessel_K1_scaled 1.69E-16 0.19 -

gsl_sf_bessel_j0 1.12E-16 0.04 -

gsl_sf_bessel_i0_scaled 0.00E+00 0.02 -

gsl_sf_bessel_i1_scaled 4.87E-15 0.03 -

gsl_sf_bessel_i2_scaled 0.00E+00 0.03 -

gsl_sf_bessel_k0_scaled 0.00E+00 0.01 -

gsl_sf_bessel_k1_scaled 0.00E+00 0.01 -

gsl_sf_bessel_k2_scaled 0.00E+00 0.01 -

gsl_sf_ellint_Kcomp 1.79E-10 0.37 ✗ 48.44

gsl_sf_ellint_Ecomp 1.27E-15 0.81 -

gsl_sf_erfc 8.13E-16 0.28 ✗ 205.25

gsl_sf_log_erfc 5.37E-16 0.20 ✗ 295.88

gsl_sf_erf 9.10E-17 0.27 ✗ 71.04

gsl_sf_erf_Z 0.00E+00 0.02 -

gsl_sf_erf_Q 8.64E-15 0.29 -

gsl_sf_hazard 7.78E-15 0.23 -

gsl_sf_exp 0.00E+00 0.01 ✗ 46.14

gsl_sf_expm1 2.58E-14 0.02 ✗ 39.11

gsl_sf_exprel 1.52E-14 0.02 -

gsl_sf_exprel_2 5.51E-11 0.03 -

gsl_sf_Shi 4.21E-16 0.63 ✗ 151.78

gsl_sf_Si 1.88E-16 0.56 ✗ 657.17

gsl_sf_fermi_dirac_m1 0.00E+00 0.02 -

gsl_sf_fermi_dirac_0 1.51E-14 0.02 -

gsl_sf_fermi_dirac_1 3.97E-16 0.30 -

gsl_sf_fermi_dirac_2 3.82E-16 0.30 -

gsl_sf_fermi_dirac_mhalf 1.72E-15 0.42 -

gsl_sf_fermi_dirac_half 1.42E-14 0.44 -

gsl_sf_fermi_dirac_3half 8.74E-15 0.41 -

gsl_sf_gamma 1.99E-14 0.24 ✗ 197.16

gsl_sf_gammainv 8.67E-14 0.51 ✗ 207.41

gsl_sf_legendre_P1 0.00E+00 0.01 ✗ 416.00

gsl_sf_legendre_Q0 7.66E-17 0.04 ✗ 659.26

gsl_sf_log 1.11E-16 0.02 ✗ 154.74

gsl_sf_log_abs 1.85E-17 0.02 ✗ 245.43

gsl_sf_log_1plusx 1.30E-16 0.12 ✗ 120.50

gsl_sf_log_1plusx_mx 1.53E-16 0.11 ✗ 347.54

gsl_sf_synchrotron_2 6.16E-13 0.17 -

gsl_sf_lncosh 0.00E+00 0.04 ✗ 441.09

Average Time on Functions without Significant Errors 0.19 758.4

Average Time on All Supported Functions 0.34 585.8

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:19

Errrel and its results are re-calculated to ErrBits for comparison. Although both ErrBits and Errrel
may be used to measure floating-point errors, the relationship between these two measurements is
not always consistent. Due to the lack of DEMC’s raw data, we could only perform this comparison
based on the reported ErrBits data from the published work on DEMC.
Section 5.3.2 shows the effectiveness of Atomu on detecting significant errors. It reports 42

functions with significant errors. This result is based on inspecting all inputs generated by Atomu,
i.e., inspecting on average 11.8 inputs for each function (see Table 3).
We have performed two additional analyses to show empirically that Atomu does not incur

false positives nor false negatives on our evaluation subjects. First, we consider false positives. For
example, the function łgsl_sf_expint_E2_scaledž is defined as f (x) = exE2(x), where E2(x) is the
second-order exponential integral. Atomu reports a significant error on the function:

• Input: -2.709975303391678e+228
• Output result from GSL: 1.1102230246251565e-16
• Oracle result from mpmath: -3.690070528496872e-229
• Errrel : 3.0086769779909848e+212

To validate that the oracle result from mpmath is accurate, we manually analyzed the series
expansion of the function at x = +∞:

f (x) = 1

x
− 2

x2
+

6

x3
+O

(
(1
x
)5
)

We notice that 1/(−2.7099753 × 10228) ≈ −3.69007 × 10−229, which confirms that mpmath is
accurate on the input and Atomu does find an error-triggering input -2.709975303391678e+228 on
łgsl_sf_expint_E2_scaled.ž

In a further analysis, we choose the eight functions in Table 4 where Atomu detects significant
errors while DEMC does not, and five additional functions at random from Table 4. Our analysis
confirms empirically that Atomu does not incur false positives.

Fig. 4. Input ranking on functions with significant errors.

As for possible false negatives, we perform
a related analysis to improve our confidence
empirically that the functions in Table 5 do
not have significant errors. We choose five
functions at random and perform intensive
testing. In particular, we run Atomu on each
the five functions with both 1000x of the orig-
inal initialization and iteration sizes. Our re-
sults show that the largest detected relative
errors remain at the same magnitude across
all five functions, providing strong evidence
that Atomu, empirically, does not have false
negatives.
To further strengthen the usability of

Atomu, we have proposed a method to rank
inputs (see Section 4.4) with the goal of de-
tecting significant errors by inspecting as few
inputs as possible.

Figure 4 shows the effectiveness of our in-
put ranking. The chart contains two lines, one for inspecting the inputs following the rank order,
and the other for inspecting inputs randomly. The line chart shows that, by inspecting the top-1

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:20 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

ranked input, we can detect significant errors in 74% (31 over 42) of all functions with significant
errors. This number raises to 95% by inspecting the top-4 ranked inputs. In contrast, as the baseline,
randomly inspecting 1 and 4 inputs per function can detect 21% and 57% functions with significant
errors, respectively.

The input ranking method is effective, detecting 74% of the functions with significant errors
using the top-1 ranked inputs and 95% using top-4 ranked inputs.

Compared with the state-of-the-art technique, Atomu achieves a 40% improvement (28 vs.
20) in detecting significant errors.

5.3.3 RQ3: How Scalable is Atomu? Since Atomu does not rely on any high-precision computation

f̂high, it is expected to be significantly faster than state-of-the-art techniques, which all require f̂high.
This section presents strong empirical results to confirm our hypothesis.

For this comparison, we use the state-of-the-art DEMC [Yi et al. 2019], whose search method

consists of a partitioned global search and a fine-grained search guided by the high-precision f̂high.
We also compare with LSGA [Zou et al. 2015], another approach for detecting floating-point errors.

It is meta-heuristic search-based using genetic algorithms, and also guided by f̂high results.
Since the test subjects of DEMC and LSGA are also functions from GSL, we can compare the

three approaches in terms of average time consumption. Atomu spends on average 0.34 seconds to
analyze one GSL function, and the time to run the oracle on all inputs reported by Atomu for each
GSL function is 0.09 seconds on average. Considering both the Atomu time and the oracle time,
our approach is 1,362x faster than DEMC (585.8 seconds per function) and 140x faster than LSGA
(∼60 seconds per function). Note that DEMC depends on extra domain information while Atomu
and LSGA do not. For example, on the function łgsl_sf_etaž, DEMC only searches the domain
[-168, 100], while Atomu and LSGA search the whole space of floating-point numbers, which is
(−1.8 × 10308, 1.8 × 10308) for double precision. Thus, the comparison significantly favors DEMC,
and even so, Atomu is still much faster than DEMC.

Compared to the two state-of-the-art techniques, Atomu is 1,362x faster than DEMC and
140x faster than LSGA.

5.4 Case Study

This section details a case study on one of the 88 GSL functions: łgsl_sf_lngamma(x)ž. According
to its documentation5, it computes the logarithm of the Gamma function, log(Γ(x)), subject to x
not being a negative integer or zero. For x < 0, the real part of log(Γ(x)) is returned, which is
equivalent to log(|Γ(x)|). The function is computed using the real Lanczos method [Lanczos 1964].
Atomu reports that the input −2.457024738220797 triggers a significant relative error of 30.6%.

To understand the root cause of this significant error, we manually analyzed the source code
of this function. Figure 5 shows the simplified code in łgsl_sf_lngamma(x)ž used to compute
x = −2.457024738220797.

First, we explain the logic of this code snippet. The Lanczos method [Lanczos 1964] is an iteration
method that can compute the Gamma function and the logarithm of Gamma function for x > 0. To
support negative x , the GSL developers applied Euler’s reflection formula [Silverman et al. 1972]

5https://www.gnu.org/software/gsl/doc/html/specfunc.html#gamma-functions

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

https://www.gnu.org/software/gsl/doc/html/specfunc.html#gamma-functions

Detecting Floating-Point Errors via Atomic Conditions 60:21

1 // inaccurate at x = -2.457024738220797

2 double gsl_sf_lngamma(const double x) {

3 // x < 0 while x is not near an integer.

4 if (...) {

5 double z = 1.0 - x;

6 double lngamma_z = lngamma_lanczos(z);

7 double val = LOG_PI

8 - (log(fabs(sin(PI*z)))+lngamma_z);

9 return val;

10 }

11 else { ... } }

Γ(z)Γ(1 − z) = π

sin(πz) , z < Z (4)

log
(��Γ(x)��)

= log
(��Γ(1 − z)��), x = 1 − z, x < 0, x < Z

= log

(���� π

Γ(z) · sin(πz)

����
)

= log(π) − log
(��Γ(z) · sin(πz)��)

= log(π) −
(
log(|Γ(z)|) + log(| sin(πz)|)

)
(5)

Fig. 5. Simplified code in gsl_sf_lngamma(x).

Fig. 6. Gamma, Loggamma and the global condition of Loggamma.

(in Equation (4)) to compute the Gamma of z, z = 1 − x instead. Equation (5) shows the detailed
inference of the formula used in Figure 5. We can see that line 6 uses the Lanczos method to
compute the log(|Γ(z)|), and lines 7-8 compute the log(|Γ(x)|) exactly following the Equation (5).
Second, we explain how Atomu finds this error-triggering input −2.457024738220797.
(1) LOG_PI = 1.1447298858494002 is a hard-coded constant.
(2) lngamma_z = 1.1538716627951078 contains a relative error about 1.58e-15.
(3) log(fabs(sin(PI*z))) = -0.009141776945711324 contains a relative error about 4.66e-15.
(4) tmp = lngamma_z + log(fabs(sin(PI*z))) = 1.1447298858493964 contains a relative

error about 1.50e-15.
(5) val = LOG_PI - tmp = 3.774758283725532e-15 contains a relative error of 3.06e-01. For this

subtraction operation, its atomic condition is 6.06e+14. The small error in tmp is significantly
amplified by this critical atomic condition.

When Atomu searches on the last subtraction operation, it tries to generate inputs triggering
critical atomic conditions, and finally finds x = −2.457024738220797 that triggers the largest atomic
condition on this operation.

Third, we notice that łgsl_sf_lngamma(x)ž is included in the benchmarks of DEMC, but DEMC
did not detect significant errors on this function. DEMC applies its estimated global condition to
guide its search. However, Figure 6 shows that the global condition of Loggamma function around
x = −2.457024738220797 is near 0. For this reason, DEMC will not search around this domain and
cannot detect the significant error. This case also shows that using atomic conditions can be more
powerful than global conditions.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:22 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

This case study shows that even expert-written libraries, with carefully fine-tuned algorithms
(both the Lanczos method and Euler’s reflection), still suffer from inaccuracy problems.

5.5 Discussions

This section provides further details and discussions on the technical design and development of
our approach. In particular, we elaborate on the challenges on using the high-precision program

f̂high, the benefits of using atomic vs. global conditions, the reasons of using relative error for
measurement, and risks of estimating global conditions without high-precision implementations.

5.5.1 Challenges for Using High-Precision Floating-Point Implementations. In numerical analysis,

it is common to use a high-precision program f̂high to simulate the conceptional mathematical
function f [Bao and Zhang 2013; Benz et al. 2012; Fu et al. 2015]. However, as discussed in Section 1,

it is costly to use f̂high in terms of both runtime and development cost, which we further elaborate
on.
In terms of runtime cost, even quadruple precision (128 bits) is 100x slower than double pre-

cision (64 bits) [Peter Larsson 2013], while programs using arbitrary precision libraries, such as
MPFR [Fousse et al. 2007] and mpmath [Johansson et al. 2018], incur further slowdowns when they
use increased precision.

In terms of development cost, high-precision implementations need to deal with precision-specific
operations [Wang et al. 2016] and hard-coded series expansions (cf. examples in Section 1). Such pat-
terns occur frequently in numerical library functions, such as łgsl_sf_bessel_j0ž, łgsl_sf_log_erfcž,
łgsl_sf_log_1plusxž, etc.. Another example is using hard-coded iterations. For example, a program
uses Newton’s method to find roots of f (x) as follows:

xn+1 = xn −
f (xn)
f ′(xn)

The program loops for a hard-coded number of iterations or uses a hard-coded tolerance. To make
this kind of programs more accurate, expert knowledge is needed to manually tune such parameters.

Without carefully tackling these challenges, f̂high cannot be treated as a high-quality approximation
to f . Due to the lack of automated tools to handle these problems, implementing a high-precision

program f̂high incurs high development cost, if not practically infeasible.
These aforementioned challenges motivate our approach of atomic conditions.

5.5.2 Atomic Condition vs. Global Condition. Several techniques [Fu et al. 2015; Yi et al. 2017]
propose the use of global conditions to analyze the (in)accuracy of floating-point programs. They
treat the given program as a black-box and compute its global conditions to measure the program’s
(in)stability [Fu et al. 2015].

Compared with global conditions, atomic conditions bring several important benefits which are
summarized in Table 6 and further discussed below:

• Speed: Atomic conditions can be straightforwardly computed by pre-calculated formulae.

Computing global conditions, on the other hand, involves high-precision f̂high [Fu et al. 2015],
which introduces both high runtime overhead and expensive development cost.
• Soundness: By using the pre-calculated formulae, atomic conditions are guaranteed to be
unbiased. Previous work [Yi et al. 2017] has suggested to estimating global conditions without
using high-precision implementations. However, this estimation can be biased and infeasible
(bias becomes the dominant term) as we will discuss in more detail in Section 5.5.4.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:23

Table 6. Benefits from atomic conditions.

Atomic Condition Global Condition (Accurate) Global Condition (Estimated)

Speed ✓ ✗ ✓

Soundness ✓ ✓ ✗

Interpretability ✓ ✗ ✗

• Interpretability: Atomic conditions help explain how errors are introduced and amplified
by atomic operations. If a significant error occurs in a program’s result, one can easily locate
the responsible atomic operation with a significantly large atomic condition.

We also use an intuitive example to illustrate the advantages of atomic conditions. Recall the

motivating example in Section 3, where we have a program f̂ (x) that triggers significant errors
when x is a small number close to 0:

f (x) = 1 − cos(x)
x2

lim
x→0

f (x) = 1

2

Note that when the input x = 10−7, the atomic condition on the subtraction becomes significant,
thus the subtraction is to blame for the significant error in the computation result.
However, the global condition is 0 when x approaches 0:

Γf (x) =
x sin(x) + 2 cos(x) − 2

1 − cos(x) lim
x→0

Γf (x) = 0

This suggests that approaches based on global conditions to detect inaccuracies may be ineffective
on this program.

5.5.3 The Reason for Using Relative Error for Measurement. As mentioned in Section 2.2, relative
error is the prevalent measurement for floating-point errors. There is also the measurement of
ErrBits, which we have mentioned in Section 5.3 when comparing our approach with DEMC [Yi
et al. 2019]. ErrCount is defined as the count of floating-point numbers (F) between the ideal f (x)
and the floating-point result f̂ (x), and ErrBits is defined as the logarithm of ErrCount to base 2:

ErrCount(f (x), f̂ (x)) =
���{p ∈ F��min(f (x), f̂ (x)) < p ≤ max(f (x), f̂ (x))

}���
ErrBits(f (x), f̂ (x)) = log2

(
ErrCount

(
f (x), f̂ (x)

))
There are two clear drawbacks to this measurement. First, it is quite counter-intuitive. In other

words, the measurement is inconsistent over the whole floating-point domain due to the dis-
tribution of floating-point numbers. For example, they are similar for two very different inter-
vals: ErrBits(0, 1) = 62 and ErrBits(0, 10−152) = 61, while quite different for two similar intervals:
ErrBits(0, 1) = 62 and ErrBits(1, 2) = 52.

Second, it does not distinguish between oracle and program results, while relative errors do. For

example, we have ErrBits(f = 0.01, f̂ = 1) = 54.75, while also ErrBits(f = 1, f̂ = 0.01) = 54.75.

On the other hand, we have Errrel(f = 0.01, f̂ = 1) = 99, while Errrel(f = 1, f̂ = 0.01) = 0.99, so
relative error can distinguish these two scenarios.

5.5.4 Estimating Global Condition without High-Precision Implementations. For a numerical pro-

gram f̂ under analysis, in most cases, the derivative f ′(x) is unavailable as a mathematical expres-

sion. Thus, the derivative f ′(x) used in computing the global condition Γf (x) =
��� x ·f ′(x)f (x)

��� can only

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:24 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

be estimated by

f ′(x) = lim
δ→0

f (x + δ) − f (x)
δ

(6)

Because of the absence of a high-precision implementation, there exist relative errors ε between

the mathematical function f and the numerical program f̂ :

f̂ (x) = f (x) ± ε1 f (x)
f̂ (x + δ) = f (x + δ) ± ε2 f (x + δ)

(7)

The estimation of derivative f̂ ′(x) is computed as:

f̂ ′(x) = f̂ (x + δ) − f̂ (x)
δ

=

f (x + δ) − f (x)
δ

± ε1

δ
f (x) ± ε2

δ
f (x + δ)

≈ f ′(x) ± ε1

δ
f (x) ± ε2

δ
(f (x) + δ f ′(x)), when δ → 0.

= f ′(x) ± ε2 f ′(x) ±
ε1 ± ε2

δ
f (x)

(8)

So, based on Equation (8), the estimation of the global condition Γ̂f (x) is computed as:

Γ̂f (x) =
�����x · f̂

′(x)
f̂ (x)

�����
=

���� (1 ± ε2)(1 ± ε1)
· x · f

′(x)
f (x)

���� ±
���x · ε1 ± ε2

δ

���
≈ Γf (x) ±

���x · ε1 ± ε2
δ

���
(9)

To make Equations (6) and (8) hold, the δ should be small (δ → 0). At the same time, Equation (9)
shows that the estimation is biased, and the bias term in the estimated global condition is given as:

lim
δ→0

���x · ε1 ± ε2
δ

��� = +∞
which means without the high-precision program f̂high to make the error (ε1 ± ε2) ≪ δ , the bias
term can become the dominant term in the estimation.

6 RELATED WORK

This section surveys several threads of closely-related work, which we discuss below.

Obtaining the oracle of floating-point programs. FpDebug [Benz et al. 2012] is built onMPFR [Fousse
et al. 2007] and Valgrind [Nethercote and Seward 2007]. It dynamically analyzes a program by per-
forming all floating-point instructions side-by-side in high precision. This type of approach assumes
that the semantics of floating-point code in high precision is closer to that of the underlying mathe-
matical function. However, this assumption does not hold on precision-specific operations [Wang
et al. 2016] and precision-related code (Section 5.5.1). Thus, it remains a significant challenge to
obtain oracles for floating-point programs.

Searching for error-triggering inputs. Several approaches have been proposed to searching inputs
that trigger significant floating-point errors. BGRT [Chiang et al. 2014] is based on a heuristic
binary search, LSGA [Zou et al. 2015] is based on a genetic algorithm, and DEMC [Yi et al. 2019] is

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:25

based on differential evolution and Markov Chain Monte Carlo (MCMC) methods. All such previous
approaches rely on the existence of oracles.

Compared with these previous search-based techniques, our approach Atomu does not rely on
the existence of oracles, which, as we have discussed, are expensive to obtain in general. Atomu
reports a set of suspicious inputs. If an oracle exists, Atomu validates the suspicious inputs and
reports those inputs that trigger significant errors. If an oracle does not exist, Atomu reports a
ranked list of inputs, and we have shown empirically that 95% of the buggy functions can be found
by inspecting the top-4 ranked inputs.

Localizing the root cause and repairing floating-point errors. Given a floating-point program and
an error-triggering input, Herbgrind [Sanchez-Stern et al. 2018] can locate an expression, which
is the root cause of error, for diagnosing and debugging. Given a small floating-point expression
(≈ 10 LoC), Herbie [Panchekha et al. 2015] can rewrite the expression to improve its numerical
accuracy. However, since Herbie uses only 256 randomly sampled inputs, it may be unable to find
the significant errors in the expression, thus would be unable to rewrite it. Herbgrind and Herbie can
be combined and considered as an automated repair tool, but rely on a given error-triggering input.
AutoRNP [Yi et al. 2019] proposes the DEMC and PTB algorithms to localize the error-triggering
interval of inputs, and applies linear approximation to repair the localized interval.

Our approach Atomu can help localize the root cause of a significant error Ð it reports not only
the error-triggering input, but also the operation on which a significant atomic condition has been
triggered. This operation is the root cause of the significant error, i.e., where the error is amplified
significantly by its atomic condition. For program repair, the inputs reported by Atomu can be
used by approaches that demand error-triggering inputs, such as the combined Herbgrind/Herbie.

Conditioning. Wilkinson introduced condition number for measuring the inherent stability of
a mathematical function f [Higham 2002]. Recently, Fu et al. [2015] proposed an approach to
computing the global condition and analyzing the accuracy of floating-point programs. Yi et al.
[2019] proposed to use the estimated global conditions to measure floating-point errors.
Our work is the first white-box analysis that proposes an error propagation model based on

atomic conditions. It is rooted on the insight that atomic conditions are the dominant factors of
floating-point errors. Atomic conditions also have strong advantages in speed, soundness, and
interpretability comparing with global conditions. Our empirical evaluation demonstrates that
Atomu is highly effective and efficient, making accurate error analysis practically feasible.

Error-bound analysis. Several approaches have been proposed to statically analyze possible upper
bounds on floating-point errors [Goubault and Putot 2011; Izycheva and Darulova 2017; Lee et al.
2016; Solovyev et al. 2019]. Such static error-bound analyses explicitly model floating-point errors
as intervals [Hickey et al. 2001] and apply standard program analysis techniques, such as abstract
interpretation or symbolic reasoning, to obtain possible upper error bounds on the program output.

Compared with these static error-bound analyses, our approach has several key differences: (1)
Our approach is dynamic, while existing error-bound analyses are static; (2) our work introduces
the concept of atomic condition; (3) our error propagation model is based on atomic conditions,
and formulates the insight that atomic conditions are dominant factors for floating-point errors;
and (4) our goal is different Ð while error-bound analysis focuses on estimating worst-case global
error-bounds, we do not use the propagation model to estimate the global error, but focus on
exploiting local/atomic conditions to help effectively find specific error-triggering inputs.

7 CONCLUSION

We have introduced a new, effective approach for finding significant floating-point errors in
numerical programs. Our key insight is to rigorously analyze the condition numbers of the atomic

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

60:26 Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su

mathematical operations in numerical programs and use them to effectively guide the search for
inputs that trigger large errors. We have designed and realized a general approach based on this
insight, and extensively evaluated it on code from the widely-used GNU Scientific Library (GSL).
Evaluation results have demonstrated the effectiveness of our approach Ð compared to state-of-
the-art approaches, it not only precisely detects more GSL functions with large floating-point
errors, but also does so several orders of magnitude faster, thus making error analysis significantly
more practical. We expect the methodology and principles behind our approach to benefit other
floating-point program analysis tasks such as debugging, repair and synthesis.

ACKNOWLEDGMENTS

We thank Pinjia He, Clara Meister, Manuel Rigger, Theodoros Theodoridis, Sverrir Thorgeirsson,
Dominik Winterer, and the anonymous POPL reviewers for valuable feedback on earlier versions
of this paper. This material is based upon work supported in part by the National Key Research and
Development Program of China under Grant No. 2017YFB1001803, the National Natural Science
Foundation of China under Grant No. 61922003, 61672045, the China Scholarships Council under
Grant No. 201806010265, and the EU’s H2020 Program under Grant No. 732287.

REFERENCES

Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. 1999. Evolutionary computation 1: Basic algorithms and operators

(1st ed.). CRC press.

James E. Baker. 1985. Adaptive Selection Methods for Genetic Algorithms. In Proceedings of the 1st International Conference

on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, John J. Grefenstette (Ed.). Lawrence Erlbaum Associates, 101ś111.

Tao Bao and Xiangyu Zhang. 2013. On-the-fly detection of instability problems in floating-point program execution. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA). 817ś832.

Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic detection of floating-point exceptions. In The 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 549ś560.

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A dynamic program analysis to find floating-point accuracy

problems. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 453ś462.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey Solovyev. 2014. Efficient search for inputs

causing high floating-point errors. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP). 43ś52.

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing probabilistic programming systems. In

Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/SIGSOFT FSE. 574ś586.

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A multiple-

precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (2007), 13.

Zhoulai Fu, Zhaojun Bai, and Zhendong Su. 2015. Automated backward error analysis for numerical code. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA). 639ś654.

David Goldberg. 1991. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Comput. Surv.

23, 1 (1991), 5ś48.

Eric Goubault and Sylvie Putot. 2011. Static Analysis of Finite Precision Computations. In Verification, Model Checking, and

Abstract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings

(Lecture Notes in Computer Science), Ranjit Jhala and David A. Schmidt (Eds.), Vol. 6538. Springer, 232ś247.

John Harrison. 2009. Decimal Transcendentals via Binary. In 19th IEEE Symposium on Computer Arithmetic (ARITH), Javier D.

Bruguera, Marius Cornea, Debjit Das Sarma, and John Harrison (Eds.). 187ś194.

Timothy J. Hickey, Qun Ju, and Maarten H. van Emden. 2001. Interval arithmetic: From principles to implementation. J.

ACM 48, 5 (2001), 1038ś1068.

Nicholas J. Higham. 2002. Accuracy and stability of numerical algorithms (2. ed.). SIAM.

Anastasiia Izycheva and Eva Darulova. 2017. On sound relative error bounds for floating-point arithmetic. In 2017

Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, Daryl Stewart and Georg

Weissenbacher (Eds.). IEEE, 15ś22.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

Detecting Floating-Point Errors via Atomic Conditions 60:27

Fredrik Johansson et al. 2018. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.1.0).

http://mpmath.org/.

Morris Kline. 1998. Calculus: an intuitive and physical approach. Courier Corporation.

Cornelius Lanczos. 1964. A precision approximation of the gamma function. Journal of the Society for Industrial and Applied

Mathematics, Series B: Numerical Analysis 1, 1 (1964), 86ś96.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In 2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,

CA, USA. 75ś88.

Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2016. Verifying bit-manipulations of floating-point. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,

June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 70ś84.

Jacques-Louis Lions, Lennart Luebeck, Jean-Luc Fauquembergue, Gilles Kahn, Wolfgang Kubbat, Stefan Levedag, Leonardo

Mazzini, Didier Merle, and Colin O’Halloran. 1996. Ariane 5 flight 501 failure report by the inquiry board.

Sandra Loosemore, Richard M Stallman, Rolandand McGrath, Andrew Oram, and Ulrich Drepper. 2019. The GNU C Library

Reference Manual. (2019). https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation. In

Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation (PLDI), Jeanne

Ferrante and Kathryn S. McKinley (Eds.). 89ś100.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically improving accuracy for

floating point expressions. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). 1ś11.

Peter Larsson. 2013. Exploring Quadruple Precision Floating Point Numbers in GCC and ICC. https://www.nsc.liu.se/~pla/

blog/2013/10/17/quadruple-precision/. [Online; accessed 24-June-2019].

Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: cross-backend validation to detect and

localize bugs in deep learning libraries. In Proceedings of the 41st International Conference on Software Engineering, ICSE.

1027ś1038.

Kevin Quinn. 1983. Ever had problems rounding off figures. This stock exchange has. The Wall Street Journal (1983), 37.

Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018. Finding root causes of floating point error. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 256ś269.

Richard A Silverman et al. 1972. Special functions and their applications. Courier Corporation.

Robert Skeel. 1992. Roundoff error and the Patriot missile. SIAM News 25, 4 (1992), 11.

Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakrishnan.

2019. Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions. ACM Trans. Program.

Lang. Syst. 41, 1 (2019), 2:1ś2:39.

Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong, Lu Zhang, and Gang Huang. 2016. Detecting and fixing precision-specific

operations for measuring floating-point errors. In Proceedings of the 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE). 619ś630.

Debora Weber-Wulff. 1992. Rounding error changes Parliament makeup. The Risks Digest 13, 37 (1992).

L. Darrell Whitley. 1989. The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive

Trials is Best. In Proceedings of the 3rd International Conference on Genetic Algorithms, George Mason University, Fairfax,

Virginia, USA, June 1989, J. David Schaffer (Ed.). Morgan Kaufmann, 116ś123.

Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. 2017. Efficient Global Search for Inputs Triggering High Floating-Point

Inaccuracies. In 24th Asia-Pacific Software Engineering Conference (APSEC). 11ś20.

Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. 2019. Efficient Automated Repair of High Floating-point Errors in Numerical

Libraries. Proc. ACM Program. Lang. 3, POPL, Article 56 (Jan. 2019), 29 pages.

Daming Zou, Ran Wang, Yingfei Xiong, Lu Zhang, Zhendong Su, and Hong Mei. 2015. A Genetic Algorithm for Detecting

Significant Floating-Point Inaccuracies. In 37th IEEE/ACM International Conference on Software Engineering (ICSE).

529ś539.

Dan Zuras, Mike Cowlishaw, et al. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (Aug 2008), 1ś70.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 60. Publication date: January 2020.

https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
https://www.nsc.liu.se/~pla/blog/2013/10/17/quadruple-precision/
https://www.nsc.liu.se/~pla/blog/2013/10/17/quadruple-precision/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Floating-Point Representation
	2.2 Error Measurement
	2.3 Errors in Floating-Point Atomic Operations
	2.4 Condition Numbers

	3 Example
	4 Error Analysis via Atomic Conditions
	4.1 Problem Definition and Approach Overview
	4.2 Error Propagation, Atomic Conditions and Danger Zones
	4.3 Atomic Condition-Guided Search
	4.4 Input Ranking

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Evaluation Results
	5.4 Case Study
	5.5 Discussions

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

