279 research outputs found

    Spatiotemporal Trends in Oral Cancer Mortality and Potential Risks Associated with Heavy Metal Content in Taiwan Soil

    Get PDF
    Central and Eastern Taiwan have alarmingly high oral cancer (OC) mortality rates, however, the effect of lifestyle factors such as betel chewing cannot fully explain the observed high-risk. Elevated concentrations of heavy metals in the soil reflect somewhat the levels of exposure to the human body, which may promote cancer development in local residents. This study assesses the space-time distribution of OC mortality in Taiwan, and its association with prime factors leading to soil heavy metal content. The current research obtained OC mortality data from the Atlas of Cancer Mortality in Taiwan, 1972–2001, and derived soil heavy metals content data from a nationwide survey carried out by ROCEPA in 1985. The exploratory data analyses showed that OC mortality rates in both genders had high spatial autocorrelation (Moran’s I = 0.6716 and 0.6318 for males and females). Factor analyses revealed three common factors (CFs) representing the major pattern of soil pollution in Taiwan. The results for Spatial Lag Models (SLM) showed that CF1 (Cr, Cu, Ni, and Zn) was most spatially related to male OC mortality which implicates that some metals in CF1 might play as promoters in OC etiology

    GDA: Generalized Diffusion for Robust Test-time Adaptation

    Full text link
    Machine learning models struggle with generalization when encountering out-of-distribution (OOD) samples with unexpected distribution shifts. For vision tasks, recent studies have shown that test-time adaptation employing diffusion models can achieve state-of-the-art accuracy improvements on OOD samples by generating new samples that align with the model's domain without the need to modify the model's weights. Unfortunately, those studies have primarily focused on pixel-level corruptions, thereby lacking the generalization to adapt to a broader range of OOD types. We introduce Generalized Diffusion Adaptation (GDA), a novel diffusion-based test-time adaptation method robust against diverse OOD types. Specifically, GDA iteratively guides the diffusion by applying a marginal entropy loss derived from the model, in conjunction with style and content preservation losses during the reverse sampling process. In other words, GDA considers the model's output behavior with the semantic information of the samples as a whole, which can reduce ambiguity in downstream tasks during the generation process. Evaluation across various popular model architectures and OOD benchmarks shows that GDA consistently outperforms prior work on diffusion-driven adaptation. Notably, it achieves the highest classification accuracy improvements, ranging from 4.4\% to 5.02\% on ImageNet-C and 2.5\% to 7.4\% on Rendition, Sketch, and Stylized benchmarks. This performance highlights GDA's generalization to a broader range of OOD benchmarks

    Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction

    Get PDF
    Among many alternatives, CO2 electroreduction (CO2ER) is an emerging technology to alleviate its level in the atmosphere and simultaneously to produce essential products containing high energy density using various electrocatalysts. Cu-based mono- and bimetallics are electrocatalysts of concerns in this work due to the material's abundance and versatility. Intrinsic factors affecting the CO2ER are first analyzed, whereby understanding and characterizing the surface features of electrocatalysts are addressed. An X-ray absorption spectroscopy-based methodology is discussed to determine electronic and structural properties of electrocatalyst surface which allows the prediction of reaction mechanism and establishing the correlation with reduction products. The selectivity and faradaic efficiency of products highly depend on the quality of surface modification. Preparation and modification of electrocatalyst surfaces through various techniques are critical to increase the number of activity sites and the corresponding site activity. Mechanisms of CO2ER are complicate and thus are discussed in accordance with main products of interests. The authors try to concisely compile the most interesting, recent, and reasonable ideas that are agreeable to experimental results. Finally, this review provides an outlook for designing better Cu and Cu-based bimetallic catalysts to obtain selective products through CO2ER

    Inflammatory Marker but Not Adipokine Predicts Mortality among Long-Term Hemodialysis Patients

    Get PDF
    Aims: chronic inflammation contributes significantly to the morbidity and mortality of chronic hemodialysis patients. A recent research has shown that adipokines were associated with inflammation in these patients. We aim to investigate whether biomarkers of inflammation, adipokines, and clinical features can predict the outcome of hemodialysis patients. Materials and methods: we enrolled 181 hemodialysis patients (men: 97, mean age: 56.3±13.6) and analyzed predictors of long-term outcomes. Results: during the 3-year followup period, 41 patients died; the main causes of death were infection and cardiovascular disease. Elevated serum levels of hsCRP and albumin and advanced age were highly associated with death (all P<.001). Leptin and adiponectin levels were not significantly different between deceased patients and survivors. Cox-regression analysis indicated that age, diabetes, albumin level, and hsCRP were independent factors predicting mortality. Conclusion: the presence of underlying disease, advanced age, and markers of chronic inflammation is strongly related to survival rate in long-term hemodialysis patients

    Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    Get PDF
    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications

    Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles

    Get PDF
    The use of microneedles for transdermal drug delivery is limited due to the risk of infection associated with formation of channels through the stratum corneum layer of the epidermis. The risk of infection associated with use of microneedles may be reduced by imparting these devices with antimicrobial properties. In this study, a photopolymerization-micromolding technique was used to fabricate microneedle arrays from a photosensitive material containing polyethylene glycol 600 diacrylate, gentamicin sulfate, and a photoinitiator. Scanning electron microscopy indicated that the photopolymerization-micromolding process produced microneedle arrays that exhibited good microneedle-to-microneedle uniformity. An agar plating assay revealed that microneedles fabricated with polyethylene glycol 600 diacrylate containing 2 mg mL−1 gentamicin sulfate inhibited growth of Staphylococcus aureus bacteria. Scanning electron microscopy revealed no platelet aggregation on the surfaces of platelet rich plasma-exposed undoped polyethylene glycol 600 diacrylate microneedles and gentamicin-doped polyethylene glycol 600 diacrylate microneedles. These efforts will enable wider adoption of microneedles for transdermal delivery of pharmacologic agents
    corecore