3,410 research outputs found

    Automated electronic medical record sepsis detection in the emergency department

    Get PDF
    Background. While often first treated in the emergency department (ED), identification of sepsis is difficult. Electronic medical record (EMR) clinical decision tools offer a novel strategy for identifying patients with sepsis. The objective of this study was to test the accuracy of an EMR-based, automated sepsis identification system.Methods. We tested an EMR-based sepsis identification tool at a major academic, urban ED with 64,000 annual visits. The EMR system collected vital sign and laboratory test information on all ED patients, triggering a “sepsis alert” for those with ≥2 SIRS (systemic inflammatory response syndrome) criteria (fever, tachycardia, tachypnea, leukocytosis) plus ≥1 major organ dysfunction (SBP ≤ 90 mm Hg, lactic acid ≥2.0 mg/dL). We confirmed the presence of sepsis through manual review of physician, nursing, and laboratory records. We also reviewed a random selection of ED cases that did not trigger a sepsis alert. We evaluated the diagnostic accuracy of the sepsis identification tool.Results. From January 1 through March 31, 2012, there were 795 automated sepsis alerts. We randomly selected 300 cases without a sepsis alert from the same period. The true prevalence of sepsis was 355/795 (44.7%) among alerts and 0/300 (0%) among non-alerts. The positive predictive value of the sepsis alert was 44.7% (95% CI [41.2–48.2%]). Pneumonia and respiratory infections (38%) and urinary tract infection (32.7%) were the most common infections among the 355 patients with true sepsis (true positives). Among false-positive sepsis alerts, the most common medical conditions were gastrointestinal (26.1%), traumatic (25.7%), and cardiovascular (20.0%) conditions. Rates of hospital admission were: true-positive sepsis alert 91.0%, false-positive alert 83.0%, no sepsis alert 5.7%.Conclusions. This ED EMR-based automated sepsis identification system was able to detect cases with sepsis. Automated EMR-based detection may provide a viable strategy for identifying sepsis in the ED

    Dupilumab-associated ocular surface disease : an interdisciplinary decision framework for prescribers in the Australian setting

    Get PDF
    Background/Objectives: Dupilumab-associated ocular surface disease (DAOSD) is of particular relevance in patients with atopic dermatitis (AD). Guidance on DAOSD assessment and management in the Australian setting is needed to reduce its impact and minimise disruption to treatment. Methods: A systematic review of the literature was undertaken to identify data pertaining to the incidence, pathophysiology, risk factors and management of DAOSD. A critical review of this literature was used to inform a decision framework for dupilumab-prescribers and develop a graded severity scoring tool to guide appropriate management options. Results: DAOSD typically emerges within 4 months of commencing dupilumab and the occurrence of new events diminishes over time. The reported incidence varies widely depending on the nature and source of the data: 8.6–22.1% (clinical trials programme), 0.5–70% (real-world data; differences in study size, duration of follow-up, ophthalmologist intervention, use of prophylaxis). Occurrence increases with AD severity and in patients with prior history of ocular disease; pathophysiology is still to be fully characterised. Management options have evolved over time and include lubricants/artificial tears, corticosteroids, calcineurin inhibitors, antihistamines, anti-inflammatory agents and antimicrobial agents. Current therapies aim to resolve symptoms or reduce severity to levels sufficiently tolerable to enable continuation of dupilumab therapy. Conclusions: Recommendations for DAOSD assessment and management include identification of high-risk patients, vigilance for red flags (keratoconus, herpetic and bacterial keratitis), regular assessment of symptom severity (before and during dupilumab therapy), conservative management of mild DAOSD by the prescribing physician and ophthalmologist referral for collaborative care of moderate–severe DAOSD and high-risk patients

    Enabling robotic adaptive behaviour capabilities for new industry 4.0 automated quality inspection paradigms

    Get PDF
    The seamless integration of industrial robotic arms with server computers, sensors and actuators can revolutionize the way automated Non-Destructive Testing (NDT) is performed and conceived. Achieving effective integration and the full potential of robotic systems presents significant challenges, since robots, sensors and end-effector tools are often not necessarily designed to be put together and form a holistic system. This paper presents recent breakthroughs, opening up new scenarios for the inspection of product quality in advanced manufacturing. Many years of research have brought to software platforms the ability to integrate external data acquisition instrumentation with industrial robots for improving the inspection speed, accuracy and repeatability of NDT. Robotic manipulators have typically been operated by predefined tool-paths generated through off-line path-planning software applications. Recent developments pave the way to data-driven autonomous robotic inspections, enabling real-time path planning and adaptive control. This paper presents a toolbox with highly efficient algorithms and software functions, developed to be used through high-level programming languages (e.g. MATLAB, LabVIEW, Python) and/or integrated with low-level languages (e.g. C#, C++) applications. The use of the toolbox can speed-up the development and the robust integration of new robotic NDT systems with real-time adaptive capabilities and is compatible with all 6-DOF KUKA robots, which are equipped with Robot Sensor Interface (RSI) software add-on. The paper describes the architecture of the toolbox and shows two application examples, where performance results are provided. The concepts described in the paper are aligned with the emerging Industry 4.0 paradigms and have wider applicability beyond NDT

    Charmless BsPP,PV,VVB_s\to PP, PV, VV Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II

    Full text link
    We provide a systematic study of charmless BsPP,PV,VVB_s \to PP, PV, VV decays (PP and VV denote pseudoscalar and vector mesons, respectively) based on an approximate six-quark operator effective Hamiltonian from QCD. The calculation of the relevant hard-scattering kernels is carried out, the resulting transition form factors are consistent with the results of QCD sum rule calculations. By taking into account important classes of power corrections involving "chirally-enhanced" terms and the vertex corrections as well as weak annihilation contributions with non-trivial strong phase, we present predictions for the branching ratios and CP asymmetries of BsB_s decays into PP, PV and VV final states, and also for the corresponding polarization observables in VV final states. It is found that the weak annihilation contributions with non-trivial strong phase have remarkable effects on the observables in the color-suppressed and penguin-dominated decay modes. In addition, we discuss the SU(3) flavor symmetry and show that the symmetry relations are generally respected

    The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates Under Conservative Assumptions

    Get PDF
    We present the results of the largest LL^{\prime} (3.8 μ3.8~\mum) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer (LBTI) Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in LL^{\prime} compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to 20\sim20 au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to 20\sim20 au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii (50\lesssim50 au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that 90%\lesssim90\% of FGK systems can host a 7 to 10 MJupM_{\mathrm{Jup}} planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.Comment: 31 pages, 13 figures, accepted to A
    corecore