27,088 research outputs found

    On the accuracy of conservation of adiabatic invariants in slow-fast systems

    Full text link
    Let the adiabatic invariant of action variable in slow-fast Hamiltonian system with two degrees of freedom have two limiting values along the trajectories as time tends to infinity. The difference of two limits is exponentially small in analytic systems. An iso-energetic reduction and canonical transformations are applied to transform the slow-fast systems to form of systems depending on slowly varying parameters in a complexified phase space. On the basis of this method an estimate for the accuracy of conservation of adiabatic invariant is given for such systems.Comment: 27 pages, 14 figure

    Fulde-Ferrel-Larkin-Ovchinnikov Inhomogeneous Superconducting State and Phase Transitions Induced by Spin Accumulation in a Ferromagnet-dx2y2 d_{x^{2}-y^{2}}-Wave Superconductor-Ferromagnet Tunnel Junction

    Full text link
    Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) inhomogeneous superconducting (SC) state, first- and second-order phase transitions, and quantum criticality induced by spin accumulation in a ferromagnet-dx2y2d_{x^{2}-y^{2}}-wave superconductor-ferromagnet tunnel junction are theoretically predicted. A complex phase diagram in the temperature-bias voltage plane is determined. It is found that the phase transitions from the homogeneous BCS state to the inhomogeneous FFLO state, and from the FFLO state with the momentum q\mathbf{% q}'s azimuthal angle θq=0\theta_{\mathbf{q}}=0 to that with θq=π/4\theta_{% \mathbf{q}}=\pi /4, are of the first-order; while the transitions from all SC states to the normal state at critical voltages are of the second-order. A Lifshitz point, a bicritical point and a quantum critical point are identified.Comment: 5 pages, 5 figure

    Analytical Results for Cold Asymmetrical Fermion Superfluids at the Mean-Field Level

    Full text link
    We present the analytical results at the mean-field level for the asymmetrical fermion system with attractive contact interaction at the zero temperature. The results can be expressed in terms of linear combinations of the elliptic integrals of the first and second kinds. In the limit of small gap parameter, we discuss how the asymmetry in fermion species affects the phases of the ground state. In the limit of large gap parameter, we show that two candidate phases are competing for the system's ground state. The Sarma phase containing a pure Fermi fluid and a mixed condensate is favored at large degree of asymmetry. The separated phase consisting of a pure Fermi fluid and a boson condensate supports the system at smaller degree of asymmetry. The two phases are degenerate in the limit of infinite pairing gap.Comment: 23 pages, no figur

    Detection of a new methanol maser line with ALMA

    Full text link
    Aims. We aimed at investigating the structure and kinematics of the gaseous disk and outflows around the massive YSO S255 NIRS3 in the S255IR-SMA1 dense clump. Methods. Observations of the S255IR region were carried out with ALMA at two epochs in the compact and extended configurations. Results. We serendipitously detected a new, never predicted, bright maser line at about 349.1 GHz, which most probably represents the CH3_3OH 14114014_{1} - 14_{0} A+^{- +} transition. The emission covers most of the 6.7 GHz methanol maser emission area of almost 1^{\prime\prime} in size and shows a velocity gradient in the same sense as the disk rotation. No variability was found on the time interval of several months. It is classified as Class II maser and probably originates in a ring at a distance of several hundreds AU from the central star.Comment: 4 pages, 4 figures, accepted by Astronomy and Astrophysic

    Atomistic origins of the phase transition mechanism in Ge2Sb2Te5

    Full text link
    Combined static and molecular dynamics first-principles calculations are used to identify a direct structural link between the metastable crystalline and amorphous phases of Ge2Sb2Te5. We find that the phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from the stable-octahedron to high-energy-unstable tetrahedron sites close to the intrinsic vacancy regions, which give rise to the formation of local 4-fold coordinated motifs. Our analyses suggest that the high figures of merit of Ge2Sb2Te5 are achieved from the optimal combination of intrinsic vacancies provided by Sb2Te3 and the instability of the tetrahedron sites provided by GeTe

    Comment on "Giant Plasticity of a Quantum Crystal"

    Get PDF
    In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They assert that Helium-4 exhibits mechanical properties not found in classical plasticity theory. Specifically, they examine high-quality crystals as a function of temperature and applied strain, where the shear modulus reaches a plateau and dissipation becomes close to zero; both quantities are reported to be independent of stress and strain, implying a reversible dissipation process and quantum tunneling. In this Comment, we show that these signatures can be explained with a classical model of thermally activated dislocation glide without the need to invoke quantum tunneling or dissipationless motion. Recently, we proposed a dislocation glide model in solid Helium-4 containing the dissipation contribution in the presence of other dislocations with qualitatively similar behavior [Zhou et al., Philos. Mag. Lett. 92 (2012) 608].Comment: 1 page, 1 figure, comment; minor revision

    The Fano resonance for Anderson impurity systems

    Full text link
    We present a general theory for the Fano resonance in Anderson impurity systems. It is shown that the broadening of the impurity level leads to an additional and important contribution to the Fano resonance around the Fermi surface, especially in the mixed valence regime. This contribution results from the interference between the Kondo resonance and the broadened impurity level. Being applied to the scanning tunnelling microscopic experiments, we find that our theory gives a consistent and quantitative account for the Fano resonance lineshapes for both Co and Ti impurities on Au or Ag surfaces. The Ti systems are found to be in the mixed valence regime.Comment: 4 pages, 5 figures, published versio

    Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?

    Full text link
    We present a model that describes stellar infrared excesses due to heating of the interstellar (IS) dust by a hot star passing through a diffuse IS cloud. This model is applied to six lambda Bootis stars with infrared excesses. Plausible values for the IS medium (ISM) density and relative velocity between the cloud and the star yield fits to the excess emission. This result is consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A- to F-type stars with large underabundances of Fe-peak elements) owe their characteristics to interactions with the ISM. This proposal invokes radiation pressure from the star to repel the IS dust and excavate a paraboloidal dust cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar photosphere. However, the measurements of the infrared excesses can also be fit by planetary debris disk models. A more detailed consideration of the conditions to produce lambda Bootis characteristics indicates that the majority of infrared-excess stars within the Local Bubble probably have debris disks. Nevertheless, more distant stars may often have excesses due to heating of interstellar material such as in our model.Comment: 10 pages, 5 figures, 4 tables, accepted by ApJ, emulateap

    Superconductivity in Ca-doped graphene

    Full text link
    Graphene, a zero-gap semimetal, can be transformed into a metallic, semiconducting or insulating state by either physical or chemical modification. Superconductivity is conspicuously missing among these states despite considerable experimental efforts as well as many theoretical proposals. Here, we report superconductivity in calcium-decorated graphene achieved by intercalation of graphene laminates that consist of well separated and electronically decoupled graphene crystals. In contrast to intercalated graphite, we find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among intercalants used in our experiments such as potassium, caesium and lithium. Ca-decorated graphene becomes superconducting at ~ 6 K and the transition temperature is found to be strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration. In addition to the first evidence for superconducting graphene, our work shows a possibility of inducing and studying superconductivity in other 2D materials using their laminates

    Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation.

    Get PDF
    Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites
    corecore