115 research outputs found

    Linear Propagation Properties for a 300 nm Film Height Silicon Nitride Photonic Integration Platform in the Optical Telecom C-band

    Full text link
    [EN] In this paper we report on the characterization of the propagation loss, group index, dispersion, birefringence, and thermo-optic phase shift of Si 3 N 4 strip waveguides with guiding film height of 300 nm fabricated using low-preassure chemical vapour depositionThe authors acknowledge financial support through projects TEC2013-42332-P, TEC2015-69787-REDT PIC4TB, TEC2016-80385-P SINXPECT, TEC2014-54449-C3-1-R, GVA PROMETEO 2013/012, EC H2020-ICT-27-2015 CSA 687777 and IP 688519, FEDER UPVOV 10-3E-492 and 08- 3E-008. G.M. acknowledges BES-2014-068523. L.B. acknowledges PTA2015-11309-IBru-Orgiles, LA.; Mico-Cabanes, G.; Pastor Abellán, D.; Pérez-López, D.; Doménech, D.; Sanchez, AM.; Cirera, JM.... (2017). Linear Propagation Properties for a 300 nm Film Height Silicon Nitride Photonic Integration Platform in the Optical Telecom C-band. Optical Society of America (OSA). 1-3. https://doi.org/10.1364/IPRSN.2017.IW2A.6S13Krimmel, E. F., Hezel, R., Nohl, U., & Bohrer, R. (1991). Si Silicon. doi:10.1007/978-3-662-09901-8Stutius, W., & Streifer, W. (1977). Silicon nitride films on silicon for optical waveguides. Applied Optics, 16(12), 3218. doi:10.1364/ao.16.003218Schipper, E. F., Brugman, A. M., Dominguez, C., Lechuga, L. M., Kooyman, R. P. H., & Greve, J. (1997). The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology. Sensors and Actuators B: Chemical, 40(2-3), 147-153. doi:10.1016/s0925-4005(97)80254-7Melchiorri, M., Daldosso, N., Sbrana, F., Pavesi, L., Pucker, G., Kompocholis, C., … Lui, A. (2005). Propagation losses of silicon nitride waveguides in the near-infrared range. Applied Physics Letters, 86(12), 121111. doi:10.1063/1.1889242Mao, S. C., Tao, S. H., Xu, Y. L., Sun, X. W., Yu, M. B., Lo, G. Q., & Kwong, D. L. (2008). Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Optics Express, 16(25), 20809. doi:10.1364/oe.16.020809Bauters, J. F., Heck, M. J. R., John, D., Dai, D., Tien, M.-C., Barton, J. S., … Bowers, J. E. (2011). Ultra-low-loss high-aspect-ratio Si_3N_4 waveguides. Optics Express, 19(4), 3163. doi:10.1364/oe.19.003163Bauters, J. F., Heck, M. J. R., John, D. D., Barton, J. S., Bruinink, C. M., Leinse, A., … Bowers, J. E. (2011). Planar waveguides with less than 01 dB/m propagation loss fabricated with wafer bonding. Optics Express, 19(24), 24090. doi:10.1364/oe.19.024090Romero-García, S., Merget, F., Zhong, F., Finkelstein, H., & Witzens, J. (2013). Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Optics Express, 21(12), 14036. doi:10.1364/oe.21.014036Subramanian, A. Z., Neutens, P., Dhakal, A., Jansen, R., Claes, T., Rottenberg, X., … Van Dorpe, P. (2013). Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532–900 nm Wavelength Window Fabricated Within a CMOS Pilot Line. IEEE Photonics Journal, 5(6), 2202809-2202809. doi:10.1109/jphot.2013.2292698Kippenberg, T. J., Holzwarth, R., & Diddams, S. A. (2011). Microresonator-Based Optical Frequency Combs. Science, 332(6029), 555-559. doi:10.1126/science.1193968Luke, K., Okawachi, Y., Lamont, M. R. E., Gaeta, A. L., & Lipson, M. (2015). Broadband mid-infrared frequency comb generation in a Si_3N_4 microresonator. Optics Letters, 40(21), 4823. doi:10.1364/ol.40.004823Krückel, C. J., Fülöp, A., Klintberg, T., Bengtsson, J., Andrekson, P. A., & Torres-Company, V. (2015). Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Optics Express, 23(20), 25827. doi:10.1364/oe.23.025827Luke, K., Dutt, A., Poitras, C. B., & Lipson, M. (2013). Overcoming Si_3N_4 film stress limitations for high quality factor ring resonators. Optics Express, 21(19), 22829. doi:10.1364/oe.21.022829Shang, K., Pathak, S., Guan, B., Liu, G., & Yoo, S. J. B. (2015). Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits. Optics Express, 23(16), 21334. doi:10.1364/oe.23.021334Sacher, W. D., Huang, Y., Lo, G.-Q., & Poon, J. K. S. (2015). Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices. Journal of Lightwave Technology, 33(4), 901-910. doi:10.1109/jlt.2015.2392784Tai Lin, P., Singh, V., Kimerling, L., & Murthy Agarwal, A. (2013). Planar silicon nitride mid-infrared devices. Applied Physics Letters, 102(25), 251121. doi:10.1063/1.4812332Epping, J. P., Hoekman, M., Mateman, R., Leinse, A., Heideman, R. G., van Rees, A., … Boller, K.-J. (2015). High confinement, high yield Si_3N_4 waveguides for nonlinear optical applications. Optics Express, 23(2), 642. doi:10.1364/oe.23.000642Glombitza, U., & Brinkmeyer, E. (1993). Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. Journal of Lightwave Technology, 11(8), 1377-1384. doi:10.1109/50.254098Tran, M. A., Komljenovic, T., Hulme, J. C., Davenport, M. L., & Bowers, J. E. (2016). A Robust Method for Characterization of Optical Waveguides and Couplers. IEEE Photonics Technology Letters, 28(14), 1517-1520. doi:10.1109/lpt.2016.255671

    Structure and Magnetic Properties of the MnBi Low Temperature Phase

    Get PDF
    High purity MnBi low temperature phase has been prepared and analyzed using magnetic measurements and neutron diffraction. The low-temperature phase of the MnBi alloy has a coercivity μ0iHc of 2.0 T at 400 K, and exhibits a positive temperature coefficient from 0 to at least 400 K. The neutron data refinement indicated that the Mn atom changes its spin direction from c axis above room temperature to nearly perpendicular to the c axis at 50 K. A canted magnetic structure has been observed below 200 K. The anisotropy field increases with increasing temperature which gives rise to a high coercivity at the higher temperatures. The anisotropic bonded magnets have maximum energy products (BH)max of 7.7 and 4.6 MGOe at room temperature and 400 K, respectively

    Low loss Si_3N_4–SiO_2 optical waveguides on Si

    No full text

    Low-loss optical waveguides using plasma-deposited silicon nitride

    No full text
    corecore