46 research outputs found
MAGICCARPET: Verified Detection and Recovery for Hardware-based Exploits
Abstract—MAGICCARPET is a new approach to defending systems against exploitable processor bugs. MAGICCARPET uses hardware to detect violations of invariants involving security-critical processor state and uses firmware to correctly push software’s state past the violations. The invariants are specified at run time. MAGICCARPET focuses on dynamically validating updates to security-critical processor state. In this work, (1) we generate correctness proofs for both MAGICCARPET hardware and firmware; (2) we prove that processor state and events never violate our security invariants at runtime; and (3) we show that MAGICCARPET copes with hardware-based exploits discovered post-fabrication using a combination of verified reconfigurations of invariants in the fabric and verified recoveries via reprogrammable software. We implement MAGICCARPET inside a popular open source processor on an FPGA platform. We evaluate MAGICCARPET using a diverse set of hardware-based attacks based on escaped and exploitable commercial processor bugs. MAGICCARPET is able to detect and recover from all tested attacks with no software run-time overhead in the attack-free case
Accumulation of an Antidepressant in Vesiculogenic Membranes of Yeast Cells Triggers Autophagy
Many antidepressants are cationic amphipaths, which spontaneously accumulate in natural or reconstituted membranes in the absence of their specific protein targets. However, the clinical relevance of cellular membrane accumulation by antidepressants in the human brain is unknown and hotly debated. Here we take a novel, evolutionarily informed approach to studying the effects of the selective-serotonin reuptake inhibitor sertraline/Zoloft® on cell physiology in the model eukaryote Saccharomyces cerevisiae (budding yeast), which lacks a serotonin transporter entirely. We biochemically and pharmacologically characterized cellular uptake and subcellular distribution of radiolabeled sertraline, and in parallel performed a quantitative ultrastructural analysis of organellar membrane homeostasis in untreated vs. sertraline-treated cells. These experiments have revealed that sertraline enters yeast cells and then reshapes vesiculogenic membranes by a complex process. Internalization of the neutral species proceeds by simple diffusion, is accelerated by proton motive forces generated by the vacuolar H+-ATPase, but is counteracted by energy-dependent xenobiotic efflux pumps. At equilibrium, a small fraction (10–15%) of reprotonated sertraline is soluble while the bulk (90–85%) partitions into organellar membranes by adsorption to interfacial anionic sites or by intercalation into the hydrophobic phase of the bilayer. Asymmetric accumulation of sertraline in vesiculogenic membranes leads to local membrane curvature stresses that trigger an adaptive autophagic response. In mutants with altered clathrin function, this adaptive response is associated with increased lipid droplet formation. Our data not only support the notion of a serotonin transporter-independent component of antidepressant function, but also enable a conceptual framework for characterizing the physiological states associated with chronic but not acute antidepressant administration in a model eukaryote
Incense smoke: clinical, structural and molecular effects on airway disease
In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home
Development and distribution in a small economy The Fiji case
SIGLEAvailable from British Library Lending Division - LD:D54166/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Guide to using develoment centres
SIGLEAvailable from British Library Document Supply Centre- DSC:q92/12300(Guide) / BLDSC - British Library Document Supply CentreGBUnited Kingdo