185 research outputs found

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    Affine semigroups having a unique Betti element

    Full text link
    We characterize affine semigroups having one Betti element and we compute some relevant non-unique factorization invariants for these semigroups. As an example, we particularize our description to numerical semigroups.Comment: 8 pages, 1 figure. To appear in Journal of Algebra and its Application

    Quantum Correlations in the Minimal Scenario

    Full text link
    In the minimal scenario of quantum correlations, two parties can choose from two observables with two possible outcomes each. Probabilities are specified by four marginals and four correlations. The resulting four-dimensional convex body of correlations, denoted Q\mathcal{Q}, is fundamental for quantum information theory. It is here studied through the lens of convex algebraic geometry. We review and systematize what is known and add many details, visualizations, and complete proofs. A new result is that Q\mathcal{Q} is isomorphic to its polar dual. The boundary of Q\mathcal{Q} consists of three-dimensional faces isomorphic to elliptopes and sextic algebraic manifolds of exposed extreme points. These share all basic properties with the usual maximally CHSH-violating correlations. These patches are separated by cubic surfaces of non-exposed extreme points. We provide a trigonometric parametrization of all extreme points, along with their exposing Tsirelson inequalities and quantum models. All non-classical extreme points (exposed or not) are self-testing, i.e., realized by an essentially unique quantum model. Two principles, which are specific to the minimal scenario, allow a quick and complete overview: The first is the pushout transformation, the application of the sine function to each coordinate. This transforms the classical polytope exactly into the correlation body Q\mathcal{Q}, also identifying the boundary structures. The second principle, self-duality, reveals the polar dual, i.e., the set of all Tsirelson inequalities satisfied by all quantum correlations. The convex body Q\mathcal{Q} includes the classical correlations, a cross polytope, and is contained in the no-signaling body, a 4-cube. These polytopes are dual to each other, and the linear transformation realizing this duality also identifies Q\mathcal{Q} with its dual.Comment: We also discuss the sets of correlations achieved with fixed Hilbert space dimension, fixed state or fixed observable

    Interpretations of Presburger Arithmetic in Itself

    Full text link
    Presburger arithmetic PrA is the true theory of natural numbers with addition. We study interpretations of PrA in itself. We prove that all one-dimensional self-interpretations are definably isomorphic to the identity self-interpretation. In order to prove the results we show that all linear orders that are interpretable in (N,+) are scattered orders with the finite Hausdorff rank and that the ranks are bounded in terms of the dimension of the respective interpretations. From our result about self-interpretations of PrA it follows that PrA isn't one-dimensionally interpretable in any of its finite subtheories. We note that the latter was conjectured by A. Visser.Comment: Published in proceedings of LFCS 201

    Separability problem for multipartite states of rank at most four

    Full text link
    One of the most important problems in quantum information is the separability problem, which asks whether a given quantum state is separable. We investigate multipartite states of rank at most four which are PPT (i.e., all their partial transposes are positive semidefinite). We show that any PPT state of rank two or three is separable and has length at most four. For separable states of rank four, we show that they have length at most six. It is six only for some qubit-qutrit or multiqubit states. It turns out that any PPT entangled state of rank four is necessarily supported on a 3x3 or a 2x2x2 subsystem. We obtain a very simple criterion for the separability problem of the PPT states of rank at most four: such a state is entangled if and only if its range contains no product vectors. This criterion can be easily applied since a four-dimensional subspace in the 3x3 or 2x2x2 system contains a product vector if and only if its Pluecker coordinates satisfy a homogeneous polynomial equation (the Chow form of the corresponding Segre variety). We have computed an explicit determinantal expression for the Chow form in the former case, while such expression was already known in the latter case.Comment: 19 page

    Affine convex body semigroups

    Full text link
    In this paper we present a new kind of semigroups called convex body semigroups which are generated by convex bodies of R^k. They generalize to arbitrary dimension the concept of proportionally modular numerical semigroup of [7]. Several properties of these semigroups are proven. Affine convex body semigroups obtained from circles and polygons of R^2 are characterized. The algorithms for computing minimal system of generators of these semigroups are given. We provide the implementation of some of them

    Factorization invariants in half-factorial affine semigroups

    Full text link
    Let NA\mathbb{N} \mathcal{A} be the monoid generated by A=a1,...,anZd.\mathcal{A} = {\mathbf{a}_1, ..., \mathbf{a}_n} \subseteq \mathbb{Z}^d. We introduce the homogeneous catenary degree of NA\mathbb{N} \mathcal{A} as the smallest NNN \in \mathbb N with the following property: for each aNA\mathbf{a} \in \mathbb{N} \mathcal{A} and any two factorizations u,v\mathbf{u}, \mathbf{v} of a\mathbf{a}, there exists factorizations u=w1,...,wt=v\mathbf{u} = \mathbf{w}_1, ..., \mathbf{w}_t = \mathbf{v} of a\mathbf{a} such that, for every k,d(wk,wk+1)N,k, \mathrm{d}(\mathbf{w}_k, \mathbf{w}_{k+1}) \leq N, where d\mathrm{d} is the usual distance between factorizations, and the length of wk,wk,\mathbf{w}_k, |\mathbf{w}_k|, is less than or equal to maxu,v.\max{|\mathbf{u}|, |\mathbf{v}|}. We prove that the homogeneous catenary degree of NA\mathbb{N} \mathcal{A} improves the monotone catenary degree as upper bound for the ordinary catenary degree, and we show that it can be effectively computed. We also prove that for half-factorial monoids, the tame degree and the ω\omega-primality coincide, and that all possible catenary degrees of the elements of an affine semigroup of this kind occur as the catenary degree of one of its Betti elements.Comment: 8 pages, 1 figur

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page

    A Generating Function for all Semi-Magic Squares and the Volume of the Birkhoff Polytope

    Get PDF
    We present a multivariate generating function for all n x n nonnegative integral matrices with all row and column sums equal to a positive integer t, the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope B_n of n x n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for the volumes of B_n and any of its faces.Comment: 24 pages, 1 figure. To appear in Journal of Algebraic Combinatoric
    corecore