56 research outputs found

    Associations of levetiracetam use with the safety and tolerability profile of chemoradiotherapy for patients with newly diagnosed glioblastoma

    Full text link
    Background Levetiracetam (LEV) is one of the most frequently used antiepileptic drugs (AED) for brain tumor patients with seizures. We hypothesized that toxicity of LEV and temozolomide-based chemoradiotherapy may overlap. Methods Using a pooled cohort of patients with newly diagnosed glioblastoma included in clinical trials prior to chemoradiotherapy (CENTRIC, CORE, AVAglio) or prior to maintenance therapy (ACT-IV), we tested associations of hematologic toxicity, nausea or emesis, fatigue, and psychiatric adverse events during concomitant and maintenance treatment with the use of LEV alone or with other AED versus other AED alone or in combination versus no AED use at the start of chemoradiotherapy and of maintenance treatment. Results Of 1681 and 2020 patients who started concomitant chemoradiotherapy and maintenance temozolomide, respectively, 473 and 714 patients (28.1% and 35.3%) were treated with a LEV-containing regimen, 538 and 475 patients (32.0% and 23.5%) with other AED, and 670 and 831 patients (39.9% and 41.1%) had no AED. LEV was associated with higher risk of psychiatric adverse events during concomitant treatment in univariable and multivariable analyses (RR 1.86 and 1.88, P < .001) while there were no associations with hematologic toxicity, nausea or emesis, or fatigue. LEV was associated with reduced risk of nausea or emesis during maintenance treatment in multivariable analysis (HR = 0.80, P = .017) while there were no associations with hematologic toxicity, fatigue, or psychiatric adverse events. Conclusions LEV is not associated with reduced tolerability of chemoradiotherapy in patients with glioblastoma regarding hematologic toxicity and fatigue. Antiemetic properties of LEV may be beneficial during maintenance temozolomide

    HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma.</p> <p>Methods</p> <p>In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy) or hypoxic (2-15 Gy) conditions.</p> <p>Results</p> <p>Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF<sub>10</sub>: 1.35 and 1.18) and U343MG (DMF<sub>10</sub>: 1.78 and 1.48). However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF<sub>10</sub>: 0.86 and 1.35) and U343MG (DMF<sub>10</sub>: 1.33 and 1.02) cells.</p> <p>Conclusions</p> <p>Results from this <it>in vitro </it>study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.</p

    Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression

    Get PDF
    The integrin antagonist cilengitide has been explored as an adjunct with anti-angiogenic properties to standard of care temozolomide chemoradiotherapy (TMZ/RT→TMZ) in newly diagnosed glioblastoma. Preclinical data as well as anecdotal clinical observations indicate that anti-angiogenic treatment may result in altered patterns of tumor progression. Using a standardized approach, we analyzed patterns of progression on MRI in 21 patients enrolled onto a phase 2 trial of cilengitide added to TMZ/RT→TMZ in newly diagnosed glioblastoma. Thirty patients from the experimental treatment arm of the EORTC/NCIC pivotal TMZ trial served as a reference. MRIcro software was used to map location and extent of initial preoperative and recurrent tumors on MRI of both groups into the same stereotaxic space which were then analyzed using an automated tool of image analysis. Clinical and outcome data of the cilengitide-treated patients were similar to those of the EORTC/NCIC trial except for a higher proportion of patients with a methylated O6-methylguanyl-DNA-methyltransferase gene promoter. Analysis of recurrence pattern revealed neither a difference in the size of the recurrent tumor nor in the distance of the recurrences from the preoperative tumor location between groups. Overall frequencies of distant recurrences were 20% in the reference group and 19% (4/21 patients) in the cilengitide group. Compared with TMZ/RT→TMZ alone, the addition of cilengitide does not alter patterns of progression. This analysis does not support concerns that integrin antagonism by cilengitide may induce a more aggressive phenotype at progression, but also provides no evidence for an anti-invasive activity of cilengitide in patients with newly diagnosed glioblastoma

    Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience

    Get PDF
    Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCED™) and paramagnetic gadodiamide (gadoCED™), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 μg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration–time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 μg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naïve rat brain and malignant glioma xenografts (correlation coefficients 0.97–0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC50) of topoCED was approximately 0.8 μM at 48 and 72 h; its concentration–time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Experiences and views of different key stakeholders on the feasibility of treating cancer-related fatigue

    Get PDF
    Background Although cancer-related fatigue (CRF) has gained increased attention in the past decade, therapy remains a challenge. Treatment programs are more likely to be effective if the needs and interests of the persons involved are well represented. This can be achieved by stakeholder engagement. In this paper, different key stakeholders’ experiences and views on the feasibility of treating CRF in the context of supportive care in hospital environments are analyzed. Method In a qualitative study with the aim of developing an integrative treatment program for CRF, a total of 22 stakeholders (6 medical oncologists, 5 nurses, 9 patients, 1 patient family member, 1 representative of the Swiss Cancer League) were interviewed either in a face-to-face (n = 12) or focus group setting (n = 2). For data analyses, the method of qualitative content analysis was used. Results The stakeholders referred to different contextual factors when talking about the feasibility of treating CRF in the context of supportive care in hospital environments. These included: assessment, reporting and information; treatability; attitude; infrastructure, time-management, costs and affordability; and integrative approach. Conclusions Key factors of a feasible treatment approach to CRF are a coherent, cost effective integrative treatment program facilitated by an interdisciplinary team of health care providers. Furthermore, the treatment approach should be patient orientated, adopting an individualized approach. The major challenges of making the integrative treatment program feasible for CRF are resources and interprofessional collaboration

    Developing an integrative treatment program for cancer-related fatigue using stakeholder engagement - a qualitative study

    Get PDF
    Background: Although cancer-related fatigue (CRF) has gained increased attention in the past decade, it remains difficult to treat. An integrative approach combining conventional and complementary medicine interventions seems highly promising. Treatment programs are more likely to be effective if the needs and interests of the people involved are well represented. This can be achieved through stakeholder engagement. Objectives: The aim of the study was to develop an integrative CRF treatment program using stakeholder engagement and to compare it to an expert version. Method: In a qualitative study, a total of 22 stakeholders (4 oncologists, 1 radiation-oncologist, 1 psycho-oncologist, 5 nurses/nurse experts, 9 patients, 1 patient family member, 1 representative of a local Swiss Cancer League) were interviewed either face-to-face or in a focus group setting. For data analysis, qualitative content analysis was used. Results: With stakeholder engagement, the integrative CRF treatment program was adapted to usual care using a prioritizing approach and allowing more patient choice. Unlike the expert version, in which all intervention options were on the same level, the stakeholder engagement process resulted in a program with 3 different levels. The first level includes mandatory nonpharmacological interventions, the second includes nonpharmacological choice-based interventions, and the third includes pharmacological interventions for severe CRF. The resulting stakeholder based integrative CRF treatment program was implemented as clinical practice guideline at our clinic (Institute for Complementary and Integrative Medicine, University Hospital Zurich). Conclusion: Through the stakeholder engagement approach, we integrated the needs and preferences of people who are directly affected by CRF. This resulted in an integrative CRF treatment program with graded recommendations for interventions and therefore potentially greater sustainability in a usual care setting
    corecore