52 research outputs found
Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods
We apply our recently developed information-theoretic measures for the characterisation and comparison of protein–protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap, homology information or motif occurrences. We present the results of a large–scale analysis of protein–protein interaction networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the methodological biases of the experimental data, we can define an information threshold above which networks may be deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this rationale, data from yeast–two–hybrid methods are sufficiently consistent to allow for intra–species comparisons (between different experiments) and inter–species comparisons, while data from affinity–purification mass–spectrometry methods show large differences even within intra–species comparisons
Explainable Recommendations in Intelligent Systems: Delivery Methods, Modalities and Risks
With the increase in data volume, velocity and types, intelligent human-agent systems have become popular and adopted in different application domains, including critical and sensitive areas such as health and security. Humans’ trust, their consent and receptiveness to recommendations are the main requirement for the success of such services. Recently, the demand on explaining the recommendations to humans has increased both from humans interacting with these systems so that they make an informed decision and, also, owners and systems managers to increase transparency and consequently trust and users’ retention. Existing systematic reviews in the area of explainable recommendations focused on the goal of providing explanations, their presentation and informational content. In this paper, we review the literature with a focus on two user experience facets of explanations; delivery methods and modalities. We then focus on the risks of explanation both on user experience and their decision making. Our review revealed that explanations delivery to end-users is mostly designed to be along with the recommendation in a push and pull styles while archiving explanations for later accountability and traceability is still limited. We also found that the emphasis was mainly on the benefits of recommendations while risks and potential concerns, such as over-reliance on machines, is still a new area to explore
Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1
Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next
Statistical and integrative system-level analysis of DNA methylation data
Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are thought to capture and mediate the effects of genetic and environmental risk factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges and algorithms associated with drawing inferences from DNA methylation data, including cell-type heterogeneity, feature selection, reverse causation and system-level analyses that require integration with other data types such as gene expression, genotype, transcription factor binding and other epigenetic information
New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia
A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world’s most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight ‘Stromatolite Provinces’. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth
- …