905 research outputs found

    Multivariate Fitting and the Error Matrix in Global Analysis of Data

    Get PDF
    When a large body of data from diverse experiments is analyzed using a theoretical model with many parameters, the standard error matrix method and the general tools for evaluating errors may become inadequate. We present an iterative method that significantly improves the reliability of the error matrix calculation. To obtain even better estimates of the uncertainties on predictions of physical observables, we also present a Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations assumed in conventional error propagation calculations. These methods are illustrated by an example from the global analysis of parton distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program made available; Normalization of Hessian matrix changed to HEP standar

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Neutrino Dimuon Production and the Strangeness Asymmetry of the Nucleon

    Get PDF
    We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon data, which provide direct constraints on the strange and anti-strange parton distributions, s(x)s(x) and sˉ(x)\bar{s}(x). To explore the strangeness sector, we adopt a general parametrization of the non-perturbative s(x),sˉ(x)s(x), \bar{s}(x) functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by the momentum integral [S−]≡∫01x[s(x)−sˉ(x)]dx[S^{-}]\equiv \int_0^1 x [s(x)-\bar{s}(x)] dx, is sensitive to the dimuon data provided the theoretical QCD constraints are enforced. We use the Lagrange Multiplier method to probe the quality of the global fit as a function of [S−][S^-] and find −0.001<[S−]<0.004-0.001 < [S^-] < 0.004. Representative parton distribution sets spanning this range are given. Comparisons with previous work are made.Comment: 23 pages, 4 figures; expanded version for publicatio

    Supersymmetric photonic signals at LEP

    Get PDF
    We explore and contrast the single-photon and diphoton signals expected at LEP 2, that arise from neutralino-gravitino (e^+ e^- -> chi + gravitino -> gamma + E_miss) and neutralino-neutralino (e^+ e^- -> chi + chi -> gamma + gamma + E_miss) production in supersymmetric models with a light gravitino. LEP 1 limits imply that one may observe either one, but not both, of these signals at LEP 2, depending on the values of the neutralino and gravitino masses: single-photons for m_chi > Mz and m_gravitino < 3 x 10^-5 eV; diphotons for m_chi < Mz and all allowed values of m_gravitino.Comment: 11 pages, LaTeX, 4 figures (included). Shortened version to appear in Physical Review Letter

    Higgs boson production with one bottom quark jet at hadron colliders

    Full text link
    We present total rates and kinematic distributions for the associated production of a single bottom quark and a Higgs boson at the Tevatron and the LHC. We include next-to-leading order QCD corrections and compare the results obtained in the four and five flavor number schemes for parton distribution functions.Comment: 4 pages, 8 figures, RevTeX

    Single-photon signals at LEP in supersymmetric models with a light gravitino

    Get PDF
    We study the single-photon signals expected at LEP in models with a very light gravitino. The dominant process is neutralino-gravitino production (e+e- -> chi+ G) with subsequent neutralino decay via chi->gamma+G, giving a gamma+E_miss signal. We first calculate the cross section at arbitrary center-of-mass energies and provide new analytic expressions for the differential cross section valid for general neutralino compositions. We then consider the constraints on the gravitino mass from LEP 1 and LEP161 single-photon searches, and possible such searches at the Tevatron. We show that it is possible to evade the stringent LEP 1 limits and still obtain an observable rate at LEP 2, in particular in the region of parameter space that may explain the CDF e+e+gamma+gamma+E_T,miss event. As diphoton events from neutralino pair-production would not be kinematically accessible in this scenario, the observation of whichever photonic signal will discriminate among the various light-gravitino scenarios in the literature. We also perform a Monte Carlo simulation of the expected energy and angular distributions of the emitted photon, and of the missing invariant mass expected in the events. Finally we specialize the results to the case of a recently proposed one-parameter no-scale supergravity model.Comment: 31 pages, LaTeX, 14 figures (included

    Next-to-leading Log Resummation of Scalar and Pseudoscalar Higgs Boson Differential Cross-Sections at the LHC and Tevatron

    Full text link
    The region of small transverse momentum in q qbar- and gg-initiated processes must be studied in the framework of resummation to account for the large, logarithmically-enhanced contributions to physical observables. In this paper, we will calculate the fixed order next-to-leading order (NLO) perturbative total and differential cross-sections for both a Standard Model (SM) scalar Higgs boson and the Minimal Supersymmetric Standard Model's (MSSM) pseudoscalar Higgs boson in the Heavy Quark Effective Theory (HQET) where the mass of the top quark is taken to be infinite. Resummation coefficients B^2_g, C^2_gg for the total cross-section resummation for the pseudoscalar case are given, as well as C^1_gg for the differential cross-section.Comment: 18 pages, REVTeX4, 5 eps figures. v2: Typos corrected, references added, a discussion of uncertainties was adde

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity
    • …
    corecore