12 research outputs found

    Extreme mechanics of colloidal polymers under compression: Buckling, creep, and break-up

    No full text
    Self-assembling patchy colloidal particles form a promising platform to create designer soft materials. To dress such systems with mechanical functionality, one can take inspiration from biological structures such as the cell's cytoskeleton, which consists of semiflexible filaments, whose mechanical behavior give the cell its unique mechanical properties. Here we present mechanical experiments on analogs of biological fibers, semiflexible "colloidal polymers"made from bonded patchy colloidal particles. We use optical tweezers to probe their extreme mechanics under increasingly high compressions and we reveal a rich nonlinear mechanical response involving buckling, viscoelastic creep, and ultimately break-up. We characterize and model this response using elastic and viscoelastic models involving Euler buckling and stress relaxation. This allows us to identify the critical Euler buckling force, and relate the critical bending at break-up to the finite patch size of the colloids. These results demonstrate the crucial role of the patch-patch interactions in the mechanics of self-assembled colloidal materials, and they provide mechanical relationships that are essential to design functional colloidal architectures inspired by nature

    Extreme mechanics of colloidal polymers under compression: Buckling, creep, and break-up

    No full text
    Self-assembling patchy colloidal particles form a promising platform to create designer soft materials. To dress such systems with mechanical functionality, one can take inspiration from biological structures such as the cell's cytoskeleton, which consists of semiflexible filaments, whose mechanical behavior give the cell its unique mechanical properties. Here we present mechanical experiments on analogs of biological fibers, semiflexible "colloidal polymers"made from bonded patchy colloidal particles. We use optical tweezers to probe their extreme mechanics under increasingly high compressions and we reveal a rich nonlinear mechanical response involving buckling, viscoelastic creep, and ultimately break-up. We characterize and model this response using elastic and viscoelastic models involving Euler buckling and stress relaxation. This allows us to identify the critical Euler buckling force, and relate the critical bending at break-up to the finite patch size of the colloids. These results demonstrate the crucial role of the patch-patch interactions in the mechanics of self-assembled colloidal materials, and they provide mechanical relationships that are essential to design functional colloidal architectures inspired by nature

    The Netherlands: Growing market, shifting segments

    No full text
    Item does not contain fulltextThis chapter illuminates how the Dutch fitness sector is organized and describes participation in fitness as well. Secondary data sources were analysed and a literature study has been carried out. The results describe a picture of an industry that has undergone a rapid development. Because of the widespread supply of fitness and its popularity, the sector is important for the national sport policy and sport economy. Although the rise of the fitness sector has reached great heights in terms of supply and demand, there are ample indications to assume that the fitness industry has not approached its ceiling yet. The results will be of help of the fitness industry to explain what it stands for and how the future of the industry might look like

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events
    corecore