190 research outputs found

    Reproductive isolation in the Aegean Ophrys omegaifera complex (Orchidaceae)

    Get PDF
    The orchid genus Ophrys operates a system of sexual deception by which high specificity of pollination is attained. Reproductive isolation in Ophrys mainly rests upon prezygotic isolation mechanisms. The level of genetic separateness of Ophrys taxa with different pollinators is therefore likely determined by the fidelity of pollinators. The present study employs genetic fingerprinting to investigate this in the east Aegean Ophrys omegaifera s.l. complex, also including O. dryis, a west Mediterranean species of this complex. Ophrys fleischmannii, O. basilissa, and the west Mediterranean O. dyris, are found to be well-separated genetic entities whereas O. omegaifera s.str. and the putative hybrid taxon, O. sitiaca, are found to be genetically inseparable across their entire range of co-occurrence. This suggests that specific pollinators have high enough fidelity to act as effective isolating factors in east Aegean O. omegaifera s.l. as a whole, but that the situation in the species pair of O. sitiaca and O. omegaifera is likely to be more comple

    Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species

    Get PDF
    Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation, we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across-species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species-specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness

    Shared patterns of species turnover between seaweeds and seed plants break down at increasing distances from the sea

    Get PDF
    We tested for correlations in the degree of spatial similarity between algal and terrestrial plants communities along 5500 km of temperate Australian coastline and whether the strength of correlation weakens with increasing distance from the coast. We identified strong correlations between macroalgal and terrestrial plant communities within the first 100 km from shore, where the strength of these marine–terrestrial correlations indeed weakens with increasing distance inland. As such, our results suggest that marine-driven community homogenization processes decompose with increasing distance from the shore toward inland. We speculate that the proximity to the marine environment produces lower levels of community turnover on land, and this effect decreases progressively farther inland. Our analysis suggests underlying ecological and evolutionary processes that give rise to continental-scale biogeographic influence from sea to land.Carlos F. D. Gurgel, Thomas Wernberg, Mads S. Thomsen, Bayden D. Russell, Paul Adam, Jonathan M. Waters & Sean D. Connel

    An Evaluation of Putative Sympatric Speciation within Limnanthes (Limnanthaceae)

    Get PDF
    Limnanthes floccosa ssp. floccosa and L. floccosa ssp. grandiflora are two of five subspecies within Limnanthes floccosa endemic to vernal pools in southern Oregon and northern California. Three seasons of monitoring natural populations have quantified that L. floccosa ssp. grandiflora is always found growing sympatrically with L. floccosa ssp. floccosa and that their flowering times overlap considerably. Despite their subspecific rank within the same species crossing experiments have confirmed that their F1 hybrids are sterile. An analysis of twelve microsatellite markers, with unique alleles in each taxon, also shows exceedingly low levels of gene flow between populations of the two subspecies. Due to the lack of previous phylogenetic resolution among L. floccosa subspecies, we used Illumina next generation sequencing to identify single nucleotide polymorphisms from genomic DNA libraries of L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora. These data were used to identify single nucleotide polymorphisms in the chloroplast, mitochondrial, and nuclear genomes. From these variable loci, a total of 2772 bp was obtained using Sanger sequencing of ten individuals representing all subspecies of L. floccosa and an outgroup. The resulting phylogenetic reconstruction was fully resolved. Our results indicate that although L. floccosa ssp. floccosa and L. floccosa ssp. grandiflora are closely related, they are not sister taxa and therefore likely did not diverge as a result of a sympatric speciation event

    Genetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae

    Get PDF
    The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae

    Overview of habitat history in subtropical oceanic island summit ecosystems

    Get PDF
    Summit ecosystems of oceanic islands constitute one of the most ephemeral and isolated ecosystems existing, harboring specific features that confer on their biota an outstanding distinctness. Summits are short-lived entities, being the last ecosystems to be constructed during the growth of the new oceanic island, and the first to vanish due either to island subsidence, island erosion, or both. Whereas their geological emergence/disappearance is controlled by the volcanic/erosion activity, Pleistocene glaciations in the past million years, by forcing the altitudinal shift of the timberline, have also likely created or destroyed summit ecosystems, enabling the appearance of alpine ecosystems during glacial maxima where they were not present in interglacial periods and vice versa. On the other hand, summit ecosystems constitute islands within islands, being more isolated from climatically similar ecosystems than the coastlines of the islands containing them. Thus summit biota, frequently displaying a high endemicity, may originate either through dispersal from other close summit ecosystems during peak periods, or from the colonization of the summits and later evolution to the new conditions from mid-altitude species of the same island. Conversely, if peak periods are absent, the disappearance of summit ecosystems implies the extinction or extirpation of their constitutive species. Current summit species have likely occupied a much larger area during glacial periods. Thus the summits may be classified as climatic refuges. This is especially the case if glacial periods were associated with much drier conditions on oceanic islands as is the case on continents
    corecore