204 research outputs found
The Effects of Parathyroid Hormone Applied at Different Regimes on the Trochanteric Region of the Femur in Ovariectomized Rat Model of Osteoporosis
This study aims to investigate the effects of two application frequencies of parathyroid hormone on the trochanteric region of rat femur. Forty-three-month-old female Sprague-Dawley rats were divided into 4 groups (n = 10/group). Three groups were ovariectomized, and 8 weeks later they were administered the following treatments (5 weeks): soy-free diet (OVX), subcutaneously injected PTH (0.040 mg/kg) 5 days a week (PTH 5x/w), subcutaneously injected PTH (0.040 mg/kg) every 2 days (PTH e2d), and a sham group. The values of the biomechanical and histomorphometric parameters showed higher results in 5x/w animals in comparison to the OVX and PTH 2ed groups. The ratio between bone diameter/marrow diameter (B.Dm/Ma.Dm) in subtrochanteric cross sections did not show any significant differences between PTH 5x/w and PTH e2d. The increased bone formation rate was observed under PTH treatment in both groups mainly at the endosteal side. The endosteum seems here to be one of the targets of PTH with an accelerate bone formation and a pronounced filling-in of intracortical cavities with higher intensity for the PTH 5x/w in comparison to PTH e2d rats
DECam integration tests on telescope simulator
The Dark Energy Survey (DES) is a next generation optical survey aimed at
measuring the expansion history of the universe using four probes: weak
gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and
Type Ia supernovae. To perform the survey, the DES Collaboration is building
the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera
which will be mounted at the Blanco 4-meter telescope at the Cerro Tololo
Inter- American Observatory. DES will survey 5000 square degrees of the
southern galactic cap in 5 filters (g, r, i, z, Y). DECam will be comprised of
74 250 micron thick fully depleted CCDs: 62 2k x 4k CCDs for imaging and 12 2k
x 2k CCDs for guiding and focus. Construction of DECam is nearing completion.
In order to verify that the camera meets technical specifications for DES and
to reduce the time required to commission the instrument, we have constructed a
full sized telescope simulator and performed full system testing and
integration prior to shipping. To complete this comprehensive test phase we
have simulated a DES observing run in which we have collected 4 nights worth of
data. We report on the results of these unique tests performed for the DECam
and its impact on the experiments progress.Comment: Proceedings of the 2nd International Conference on Technology and
Instrumentation in Particle Physics (TIPP 2011). To appear in Physics
Procedia. 8 pages, 3 figure
Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model
In this study, short-term, whole-body vertical vibration at 90 Hz improved trabecular bone quality. There was an improvement of bone quality and density in both osteoporotic and control rats. This treatment may therefore be an attractive option for the treatment of osteoporosis. Aside from pharmacological treatment options, physical exercise is known to augment bone mass. In this study, the effects of whole-body vertical vibration (WBVV) on bone quality and density were evaluated using an osteoporotic rat model. Sixty female Sprague Dawley rats were ovariectomized (C) or sham (SHAM) operated at the age of 3 months. After 3 months, both groups were divided into two subgroups that received either WBVV at 90 Hz for 35 days or no treatment. After sacrificing the rats, we evaluated vertebral bone strength, histomorphometric parameters, and bone mineral density (BMD). Treatment with WBVV resulted in improved biomechanical properties. The yield load after WBVV was significantly enhanced. According to yield load and Young's modulus, the treated OVX rats reached the level of the untreated SHAM animals. In all measured histomorphometric parameters, WBVV significantly improved bone density. Treatment with WBVV demonstrated greater effects on the trabecular bone compared to the cortical bone. The ash-BMD index showed significant differences between treated and untreated rats. Using WBVV as a non-pharmacological supportive treatment option for osteoporosis demonstrated an enhancement of bone strength and bone mass. This procedure may be an attractive option for the treatment of osteoporosis
Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency
Technological Change in Resource Extraction and Endogenous Growth
We add an extractive sector to an endogenous growth model of expanding varieties and directed technological change. Extractive firms reduce the stock of non-renewable resources through extraction, but also increase the stock through R&D investment in extraction technology. Our model replicates long-term trends in non-renewable resource markets, namely stable prices and exponentially increasing extraction, for which we present data from 1792 to 2009. The model suggests that the development of new extraction technologies neutralizes the increasing demand for non-renewable resources in industrializing countries like China in the long term
Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila
The lipid-modified morphogens Wnt and Hedgehog diffuse poorly in isolation yet can spread over long distances in vivo, predicting existence of two distinct forms of these mophogens. The first is poorly mobile and activates short-range target genes. The second is specifically packed for efficient spreading to induce long-range targets. Subcellular mechanisms involved in the discriminative secretion of these two forms remain elusive. Wnt and Hedgehog can associate with membrane microdomains, but the function of this association was unknown. Here we show that a major protein component of membrane microdomains, reggie-1/flotillin-2, plays important roles in secretion and spreading of Wnt and Hedgehog in Drosophila. Reggie-1 loss-of-function results in reduced spreading of the morphogens, while its overexpression stimulates secretion of Wnt and Hedgehog and expands their diffusion. The resulting changes in the morphogen gradients differently affect the short- and long-range targets. In its action reggie-1 appears specific for Wnt and Hedgehog. These data suggest that reggie-1 is an important component of the Wnt and Hedgehog secretion pathway dedicated to formation of the mobile pool of these morphogens
- …