28 research outputs found

    The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 Years): a double-blind randomized study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ageing is associated with a significant reduction in skeletal muscle carnosine which has been linked with a reduction in the buffering capacity of muscle and in theory, may increase the rate of fatigue during exercise. Supplementing beta-alanine has been shown to significantly increase skeletal muscle carnosine. The purpose of this study, therefore, was to examine the effects of ninety days of beta-alanine supplementation on the physical working capacity at the fatigue threshold (PWC<sub>FT</sub>) in elderly men and women.</p> <p>Methods</p> <p>Using a double-blind placebo controlled design, twenty-six men (n = 9) and women (n = 17) (age ± SD = 72.8 ± 11.1 yrs) were randomly assigned to either beta-alanine (BA: 800 mg × 3 per day; n = 12; CarnoSynℱ) or Placebo (PL; n = 14) group. Before (pre) and after (post) the supplementation period, participants performed a discontinuous cycle ergometry test to determine the PWC<sub>FT</sub>.</p> <p>Results</p> <p>Significant increases in PWC<sub>FT </sub>(28.6%) from pre- to post-supplementation were found for the BA treatment group (p < 0.05), but no change was observed with PL treatment. These findings suggest that ninety days of BA supplementation may increase physical working capacity by delaying the onset of neuromuscular fatigue in elderly men and women.</p> <p>Conclusion</p> <p>We suggest that BA supplementation, by improving intracellular pH control, improves muscle endurance in the elderly. This, we believe, could have importance in the prevention of falls, and the maintenance of health and independent living in elderly men and women.</p

    Beta-alanine (Carnosynℱ) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity

    Get PDF
    The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60–80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2 × 800 mg sustained-release Carnosynℱ tablets, given 2 times per day). The PL group received 2 × (2 × 800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p = 0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p = 0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p = 0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r = 0.62; p = 0.01) and in the incremental test (r = 0.48; p = 0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity

    Determinants of muscle carnosine content

    Get PDF
    The main determinant of muscle carnosine (M-Carn) content is undoubtedly species, with, for example, aerobically trained female vegetarian athletes [with circa 13 mmol/kg dry muscle (dm)] having just 1/10th of that found in trained thoroughbred horses. Muscle fibre type is another key determinant, as type II fibres have a higher M-Carn or muscle histidine containing dipeptide (M-HCD) content than type I fibres. In vegetarians, M-Carn is limited by hepatic synthesis of ÎČ-alanine, whereas in omnivores this is augmented by the hydrolysis of dietary supplied HCD’s resulting in muscle levels two or more times higher. ÎČ-alanine supplementation will increase M-Carn. The same increase in M-Carn occurs with administration of an equal molar quantity of carnosine as an alternative source of ÎČ-alanine. Following the cessation of supplementation, M-Carn returns to pre-supplementation levels, with an estimated t1/2 of 5–9 weeks. Higher than normal M-Carn contents have been noted in some chronically weight-trained subjects, but it is unclear if this is due to the training per se, or secondary to changes in muscle fibre composition, an increase in ÎČ-alanine intake or even anabolic steroid use. There is no measureable loss of M-Carn with acute exercise, although exercise-induced muscle damage may result in raised plasma concentrations in equines. Animal studies indicate effects of gender and age, but human studies lack sufficient control of the effects of diet and changes in muscle fibre composition

    Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers

    No full text
    There is considerable interest in potential ergogenic and therapeutic effects of increasing skeletal muscle carnosine content, although its effects on excitationcontraction (EC) coupling in human muscle have not been defined. Consequently, we sought to characterize what effects carnosine, at levels attained by supplementation, has on human muscle fiber function, using a preparation with all key EC coupling proteins in their in situ positions. Fiber segments, obtained from vastus lateralis muscle of human subjects by needle biopsy, were mechanically skinned, and their Ca release and contractile apparatus properties were characterized. Ca sensitivity of the contractile apparatus was significantly increased by 8 and 16 mM carnosine (increase in pCa50 of 0.073 ± 0.007 and 0.116 ± 0.006 pCa units, respectively, in six type I fibers, and 0.063 ± 0.018 and 0.103 ± 0.013 pCa units, respectively, in five type II fibers). Caffeine-induced force responses were potentiated by 8 mM carnosine in both type I and II fibers, with the potentiation in type II fibers being entirely explicable by the increase in Ca sensitivity of the contractile apparatus caused by carnosine. However, the potentiation of caffeine-induced responses caused by carnosine in type I fibers was beyond that expected from the associated increase in Ca sensitivity of the contractile apparatus and suggestive of increased Ca -induced Ca release. Thus increasing muscle carnosine content likely confers benefits to muscle performance in both fiber types by increasing the Ca sensitivity of the contractile apparatus and possibly also by aiding Ca release in type I fibers, helping to lessen or slow the decline in muscle performance during fatiguing stimulation

    Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): a stressor on the immune system

    Get PDF
    Drug abuse is a global problem of considerable concern to health. One such health concern stems from the fact that many drugs of abuse have immunosuppressive actions and consequently have the potential to increase susceptibility to infectious disease. This article is focused on the impact of the amphetamine derivative, methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) on immunity. Research conducted over the last 5 years, in both laboratory animals and humans, has demonstrated that MDMA has immunosuppressive actions. Specifically, MDMA suppresses neutrophil phagocytosis, suppresses production of the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin (IL)-1ÎČ, and increases production of the endogenous immunosuppressive cytokine (IL-10), thereby promoting an immunosuppressive cytokine phenotype. MDMA also suppresses circulating lymphocyte numbers, with CD4(+) T cells being particularly affected, and alters T-cell function as indicated by reduced mitogen-stimulated T-cell proliferation, and a skewing of T-cell cytokine production in a T helper 2 (Th2) direction. For the most part, the aforementioned effects of MDMA are not the result of a direct action of the drug on immune cells, but rather caused by the release of endogenous immunomodulatory substances. Consequently, the physiological mechanisms that are thought to underlie the immunosuppressive effects of MDMA will be discussed. As many of the physiological changes elicited by MDMA closely resemble those induced by acute stress, it is suggested that exposure to MDMA could be regarded as a ‘chemical stressor’ on the immune system. Finally, the potential of MDMA-induced immunosuppression to translate into significant health risks for abusers of the drug will be discussed
    corecore