29 research outputs found

    Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA

    Get PDF
    Fragments of phage T7 DNA have been cloned in Escherichia coli by using the plasmid pMB9. Such cloned fragments are able to recombine with infecting phages, thus providing a means to integrate the physical and genetic maps of T7 DNA. Approximately 65% of the T7 DNA molecule has been found in clones so far, and analysis of these clones has mapped genes 12-17 with an accuracy of about 1% the total length of T7 DNA. At least some cloned segments can supply T7 functions to infecting phages

    Metabolic Network for the Biosynthesis of Intra- and Extracellular alpha-Glucans Required for Virulence of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis synthesizes intra- and extracellular alpha-glucans that were believed to originate from separate pathways. The extracellular glucose polymer is the main constituent of the mycobacterial capsule that is thought to be involved in immune evasion and virulence. However, the role of the alpha-glucan capsule in pathogenesis has remained enigmatic due to an incomplete understanding of alpha-glucan biosynthetic pathways preventing the generation of capsule-deficient mutants. Three separate and potentially redundant pathways had been implicated in alpha-glucan biosynthesis in mycobacteria: the GlgC-GlgA, the Rv3032 and the TreS-Pep2-GlgE pathways. We now show that alpha-glucan in mycobacteria is exclusively assembled intracellularly utilizing the building block alpha-maltose-1-phosphate as the substrate for the maltosyltransferase GlgE, with subsequent branching of the polymer by the branching enzyme GlgB. Some alpha-glucan is exported to form the alpha-glucan capsule. There is an unexpected convergence of the TreS-Pep2 and GlgC-GlgA pathways that both generate alpha-maltose-1-phosphate. While the TreS-Pep2 route from trehalose was already known, we have now established that GlgA forms this phosphosugar from ADP-glucose and glucose 1-phosphate 1000-fold more efficiently than its hitherto described glycogen synthase activity. The two routes are connected by the common precursor ADPglucose, allowing compensatory flux from one route to the other. Having elucidated this unexpected configuration of the metabolic pathways underlying alpha-glucan biosynthesis in mycobacteria, an M. tuberculosis double mutant devoid of alpha-glucan could be constructed, showing a direct link between the GlgE pathway, alpha-glucan biosynthesis and virulence in a mouse infection model

    Structure and mechanism of ADP-ribose-1″-monophosphatase (Appr-1″-pase), a ubiquitous cellular processing enzyme

    No full text
    Appr-1″-pase, an important and ubiquitous cellular processing enzyme involved in the tRNA splicing pathway, catalyzes the conversion of ADP-ribose-1″monophosphate (Appr-1″-p) to ADP-ribose. The structures of the native enzyme from the yeast and its complex with ADP-ribose were determined to 1.9 Å and 2.05 Å, respectively. Analysis of the three-dimensional structure of this protein, selected as a target in a structural genomics project, reveals its putative function and provides clues to the catalytic mechanism. The structure of the 284-amino acid protein shows a two-domain architecture consisting of a three-layer αβα sandwich N-terminal domain connected to a small C-terminal helical domain. The structure of Appr-1″-pase in complex with the product, ADP-ribose, reveals an active-site water molecule poised for nucleophilic attack on the terminal phosphate group. Loop-region residues Asn 80, Asp 90, and His 145 may form a catalytic triad
    corecore