1,368 research outputs found

    New filter technique improves home television reception

    Get PDF
    Program studies and designs combline filters and analyzes their effectiveness in improving TV quality. Signal tracking methods are improved. Combline phase-lock loop provides significant sensitivity improvement above and below threshold

    A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery.

    Get PDF
    Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA

    Direct in vitro comparison of six three-dimensional positive contrast methods for susceptibility marker imaging.

    Get PDF
    PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available

    Fluorine-19 magnetic resonance angiography of the mouse.

    Get PDF
    PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo

    Coronary Angiography Breathhold Three-Dimensional Coronary Magnetic Resonance Angiography Using Real-Time Navigator Technology

    Get PDF
    The acquisition duration of most three-dimensional (30) coronary magnetic resonance angiography (MRA) techniques is considerably prolonged, thereby precluding breathholding as a mechanism to suppress respiratory motion artifacts. Splitting the acquired 30 volume into multiple subvolumes or slabs serves to shorten individual breathhold duration. Still, problems associated with misregistration due to inconsistent depths of expiration and diaphragmatic drift during sustained respiration remain to be resolved. Me propose the combination of an ultrafast 30 coronary MRA imaging sequence with prospective real-time navigator technology, which allows correction of the measured volume position. 30 volume splitting using prospective real-time navigator technology, was successfillly applied for3D coronary MRA in five healthy individuals. An ultrafast 30 interleaved hybrid gradient-echoplanar imaging sequence, including T2Prep for contrast enhancement, was used with the navigator localized at the basal anterior wall of the left ventricle. A 9-cm-thick volume, with in-plane spatial resolution of 1.1 X 2.2 mm, was acquired during five breathholds of 15-sec duration each. Consistently, no evidence of misregistration was observed in the images. Extensive contiguous segments of the left anterior descending coronary artery (48 2 18 mm) and the right coronary artery (75

    Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

    Get PDF
    PURPOSE: To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. MATERIALS AND METHODS: The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. RESULTS: (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. CONCLUSION: (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of vulnerable atherosclerosis and the elucidation of inflammation mechanisms in atherosclerosis

    Fetal cardiac cine magnetic resonance imaging in utero.

    Get PDF
    Fast magnetic resonance imaging (MRI) led to the emergence of 'cine MRI' techniques, which enable the visualization of the beating heart and the assessment of cardiac morphology and dynamics. However, established cine MRI methods are not suitable for fetal heart imaging in utero, where anatomical structures are considerably smaller and recording an electrocardiogram signal for synchronizing MRI data acquisition is difficult. Here we present a framework to overcome these challenges. We use methods for image acquisition and reconstruction that robustly produce images with sufficient spatial and temporal resolution to detect the heart contractions of the fetus, enabling a retrospective gating of the images and thus the generation of images of the beating heart. To underline the potential of our approach, we acquired in utero images in six pregnant patients and compared these with their echocardiograms. We found good agreement in terms of diameter and area measurements, and low inter- and intra- observer variability. These results establish MRI as a reliable modality for fetal cardiac imaging, with a substantial potential for prenatal evaluation of congenital heart defects

    Three-Dimensional Self-Navigated T2 Mapping for the Detection of Acute Cellular Rejection After Orthotopic Heart Transplantation.

    Get PDF
    T2 mapping is a magnetic resonance imaging technique measuring T2 relaxation time, which increases with the myocardial tissue water content. Myocardial edema is a component of acute cellular rejection (ACR) after heart transplantation. This pilot study compares in heart transplantation recipients a novel high resolution 3-dimensional (3D) T2-mapping technique with standard 2-dimensional (2D) T2-mapping for ACR detection. Consecutive asymptomatic patients (n = 26) underwent both 3D T2 mapping and reference 2D T2 mapping magnetic resonance imaging on the day of endomyocardial biopsy (EMB). 3D T2 maps were obtained at an isotropic spatial resolution of 1.72 mm (voxel volume 5.1 mm(3)). 2D and 3D maps were matched anatomically, and maximum segmental T2 values were compared blinded to EMB results. In addition, all 3D T2 maps were rendered as 3D images and inspected for foci of T2 elevation. T2 values of segments from 2D and reformatted 3D T2 maps agreed (p > 0.5). The highest 2D segmental T2 values were 49.9 ± 4.0 ms (no ACR = 0R, n = 18), 48.9 ± 0.8 ms (mild ACR = 1R, n = 3), and 65.0 ms (moderate ACR = 2R). Rendered 3D T2 maps of cases with 1R showed foci with significantly elevated T2 signal (T2 = 58.2 ± 3.6 ms); 5 cases (28%) in the 0R group showed foci with increased T2 values (>2 SD above adjacent tissue) that were not visible on the 2D T2 maps. This pilot study in a small cohort suggests equivalency of standard segmental analysis between 3D and 2D T2-mapping. 3D T2 mapping provides a spatial resolution that permits detection of foci with elevated T2 in patients with mild ACR
    corecore