484 research outputs found

    Additional support for the TDK/MABL computer program

    Get PDF
    An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort

    Experimental archeology and serious games: challenges of inhabiting virtual heritage

    Get PDF
    Experimental archaeology has long yielded valuable insights into the tools and techniques that featured in past peoplesā€™ relationship with the material world around them. However, experimental archaeology has, hitherto, confined itself to rigid, empirical and quantitative questions. This paper applies principles of experimental archaeology and serious gaming tools in the reconstructions of a British Iron Age Roundhouse. The paper explains a number of experiments conducted to look for quantitative differences in movement in virtual vs material environments using both ā€œvirtualā€ studio reconstruction as well as material reconstruction. The data from these experiments was then analysed to look for differences in movement which could be attributed to artefacts and/or environments. The paper explains the structure of the experiments, how the data was generated, what theories may make sense of the data, what conclusions have been drawn and how serious gaming tools can support the creation of new experimental heritage environments

    A Parametric Study of a Plug Nozzle, Using the Liquid Propellant Program (LPP) Code

    Get PDF
    The Liquid Propellant Program (LPP) computer code is a super-set of the industry standard Two Dimensional Kinetics (TDK) computer code. The TDK code uses a two dimensional method of characteristics solution with fully coupled finite rate kinetics for axially symmetric nozzles. The chemical reactions are modeled with a generalized reaction package that include three dimensional body efficiencies and four reaction rate forms. The code performs optional solutions for frozen or equilibrium flow. TDK evaluates discrete shocks, both attached or induced. The Transonic module models variable mixture ratio profiles from the combustion chamber injector. The Mass Addition Boundary Layer module (MABL) calculates the boundary parameters with the same chemistry options, and includes transpiration or tangential slot injection of gas at the wall. The LPP upgrades include: planar nozzle, scarfed nozzles, plug nozzles, and scramjet nozzle configurations. The code evaluates both upper and lower wall flow simulation, and includes the interaction with the external flow. The MABL module evaluates equilibrium radiation heat transfer for both upper and lower walls. In addition, LPP code models combustion effects due to injector inefficiencies with the Spray Combustion Analysis Program (SCAP) module. The LPP package provides extensive post plotting capabilities for flow visualization. The LPP is sufficiently fast and robust to provide performance predictions for extensive parametric studies and sufficiently accurate to provide flow field and performance solutions for detailed studies

    Statistical analysis plan for the ā€˜Tranexamic acid for hyperacute primary IntraCerebral Haemorrhageā€™ (TICH-2) trial

    Get PDF
    Rationale Aside from blood pressure lowering, treatment options for intracerebral haemorrhage remain limited and a proportion of patients will undergo early haematoma expansion with resultant significant morbidity and mortality. Tranexamic acid (TXA), an anti-fibrinolytic drug, has been shown to significantly reduce mortality in patients, who are bleeding following trauma, when given rapidly. TICH-2 is testing whether TXA is effective at improving outcome in spontaneous intracerebral haemorrhage (SICH). Methods and design TICH-2 is a pragmatic, phase III, prospective, double-blind, randomised placebo-controlled trial. Two thousand adult (agedā€‰ā‰„ā€‰18 years) patients with an acute SICH, within 8 h of stroke onset, will be randomised to receive TXA or the placebo control. The primary outcome is ordinal shift of modified Rankin Scale score at day 90. Analyses will be performed using intention-to-treat. Results This paper and its attached appendices describe the statistical analysis plan (SAP) for the trial and were developed and published prior to database lock and unblinding to treatment allocation. The SAP includes details of analyses to be undertaken and unpopulated tables which will be reported in the primary and key secondary publications. The database will be locked in early 2018, ready for publication of the results later in the same year. Discussion The SAP details the analyses that will be done to avoid bias arising from prior knowledge of the study findings. The trial will determine whether TXA can improve outcome after SICH, which currently has no definitive therapy. Trial registration ISRCTN registry, ID: ISRCTN93732214. Registered on 17 January 2013

    Reductively Responsive siRNA-Conjugated Hydrogel Nanoparticles for Gene Silencing

    Get PDF
    A critical need still remains for effective delivery of RNA interference (RNAi) therapeutics to target tissues and cells. Self-assembled lipid- and polymer-based systems have been most extensively explored for transfection with small interfering RNA (siRNA) in liver and cancer therapies. Safety and compatibility of materials implemented in delivery systems must be ensured to maximize therapeutic indices. Hydrogel nanoparticles of defined dimensions and compositions, prepared via a particle molding process that is a unique off-shoot of soft lithography known as PRINT (Particle Replication in Non-wetting Templates), were explored in these studies as delivery vectors. Initially, siRNA was encapsulated in particles through electrostatic association and physical entrapment. Dose-dependent gene silencing was elicited by PEGylated hydrogels at low siRNA doses without cytotoxicity. To prevent disassociation of cargo from particles after systemic administration or during post-fabrication processing for surface functionalization, a polymerizable siRNA pro-drug conjugate with a degradable, disulfide linkage was prepared. Triggered release of siRNA from the prodrug hydrogels was observed under a reducing environment while cargo retention and integrity were maintained under physiological conditions. Gene silencing efficiency and cytocompatibility were optimized by screening the amine content of the particles. When appropriate control siRNA cargos were loaded into hydrogels, gene knockdown was only encountered for hydrogels containing releasable, target-specific siRNAs, accompanied by minimal cell death. Further investigation into shape, size, and surface decoration of siRNA-conjugated hydrogels should enable efficacious targeted in vivo RNAi therapies
    • ā€¦
    corecore