620 research outputs found

    The Digital Police Officer using linguistic analysis to identify cybercriminals

    No full text
    The aim of the Digital Police Officer project (DPO) is to identify cybercriminals based on their writing style. When a criminal underground forum is closed down, cybercriminals move to another one to further their illicit business. These users do not necessarily return with the same uername. We are producing a demo that can still identify such cybercriminals. We look at the way they communicate, analysing the characteristics of forum users (i.e. based on their vocabulary and grammar) to build a linguistic fingerprin

    CT dose reduction factors in the thousands using X-ray phase contrast

    Full text link
    Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Previously, it has been shown that combining phase retrieval with computed tomography (CT) can increase the signal-to-noise ratio (SNR) by up to two orders of magnitude over conventional CT at the same radiation dose, without loss of image quality. Our experiments reveal that as radiation dose decreases, the relative improvement in SNR increases. We discovered this enhancement can be traded for a reduction in dose greater than the square of the gain in SNR. Upon reducing the dose 300 fold, the phase-retrieved SNR was still almost 10 times larger than the absorption contrast data. This reveals the potential for dose reduction factors in the tens of thousands without loss in image quality, which would have a profound impact on medical and industrial imaging applications

    Transitional circulation and hemodynamic monitoring in newborn infants

    Get PDF
    Transitional circulation is normally transient after birth but can vary markedly between infants. It is actually in a state of transition between fetal (in utero) and neonatal (postnatal) circulation. In the absence of definitive clinical trials, information from applied physiological studies can be used to facilitate clinical decision making in the presence of hemodynamic compromise. This review summarizes the peculiar physiological features of the circulation as it transitions from one phenotype into another in term and preterm infants. The common causes of hemodynamic compromise during transition, intact umbilical cord resuscitation, and advanced hemodynamic monitoring are discussed. Impact: Transitional circulation can vary markedly between infants. There are alterations in preload, contractility, and afterload during the transition of circulation after birth in term and preterm infants. Hemodynamic monitoring tools and technology during neonatal transition and utilization of bedside echocardiography during the neonatal transition are increasingly recognized. Understanding the cardiovascular physiology of transition can help clinicians in making better decisions while managing infants with hemodynamic compromise. The objective assessment of cardio-respiratory transition and understanding of physiology in normal and disease states have the potential of improving short- and long-term health outcomes

    Comparison of Two Respiratory Support Strategies for Stabilization of Very Preterm Infants at Birth: A Matched-Pairs Analysis

    Get PDF
    Objective: Respiratory support for stabilizing very preterm infants at birth varies between centers. We retrospectively compared two strategies that involved either increasing continuous positive airway pressures (CPAP), or increasing oxygen supplementation.Methods: Matched-pairs of infants (<28 weeks of gestation) were born either at the Leiden University Medical Center [low-pressure: CPAP 5–8 cmH2O and/or positive pressure ventilation (PPV) and fraction of inspired oxygen (FiO2) 0.3–1.0; n = 27], or at the University Hospital of Cologne (high-pressure: CPAP 12–35 cmH2O, no PPV and FiO2 0.3–0.4; n = 27). Respiratory support was initiated non-invasively via facemask at both units. Infants (n = 54) were matched between centers for gestational age and birth weight, to compare physiological and short-term clinical outcomes.Results: In the low-pressure group, 20/27 (74%) infants received 1–2 sustained inflations (20, 25 cm H2O) and 22/27 (81%) received PPV (1:19–3:01 min) using pressures of 25–27 cm H2O. Within 3 min of birth [median (IQR)], mean airway pressures [12 (6–15) vs. 19 (16–23) cmH2O, p < 0.001] and FiO2 [0.30 (0.28–0.31) vs. 0.22 (0.21–0.30), p < 0.001] were different in low- vs. high-pressure groups, respectively. SpO2 and heart rates were similar. After 3 min, higher FiO2 levels [0.62 (0.35–0.98) vs. 0.28 (0.22–0.38), p = 0.005] produced higher SpO2 levels [77 (50–92) vs. 53 (42–69)%, p < 0.001] in the low-pressure group, but SpO2/FiO2 and heart rates were similar. While intubation rates during admission were significantly different (70 vs. 30%, p = 0.013), pneumothorax rates (4 vs. 19%, p = 0.125) and the occurrence of spontaneous intestinal perforations (0 vs. 15%, p = 0.125) were similar between groups.Conclusion: Infants (<28 weeks) can be supported non-invasively at birth with either higher or lower pressures and while higher-pressure support may require less oxygen, it does not eliminate the need for oxygen supplementation. Future studies need to examine the effect of high pressures and pressure titration in the delivery room

    An internet-based intervention with brief nurse support to manage obesity in primary care (POWeR+): a pragmatic, parallel-group, randomised controlled trial

    Get PDF
    Background The obesity epidemic has major public health consequences. Expert dietetic and behavioural counselling with intensive follow-up is effective, but resource requirements severely restrict widespread implementation in primary care, where most patients are managed. We aimed to estimate the effectiveness and cost-effectiveness of an internet-based behavioural intervention (POWeR+) combined with brief practice nurse support in primary care. Methods We did this pragmatic, parallel-group, randomised controlled trial at 56 primary care practices in central and south England. Eligible adults aged 18 years or older with a BMI of 30 kg/m2 or more (or ≥28 kg/m2 with hypertension, hypercholesterolaemia, or diabetes) registered online with POWeR+—a 24 session, web-based, weight management intervention lasting 6 months. After registration, the website automatically randomly assigned patients (1:1:1), via computer-generated random numbers, to receive evidence-based dietetic advice to swap foods for similar, but healthier, choices and increase fruit and vegetable intake, in addition to 6 monthly nurse follow-up (control group); web-based intervention and face-to-face nurse support (POWeR+Face-to-face [POWeR+F]; up to seven nurse contacts over 6 months); or web-based intervention and remote nurse support (POWeR+Remote [POWeR+R]; up to five emails or brief phone calls over 6 months). Participants and investigators were masked to group allocation at the point of randomisation; masking of participants was not possible after randomisation. The primary outcome was weight loss averaged over 12 months. We did a secondary analysis of weight to measure maintenance of 5% weight loss at months 6 and 12. We modelled the cost-effectiveness of each intervention. We did analysis by intention to treat, with multiple imputation for missing data. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN21244703. Findings Between Jan 30, 2013, and March 20, 2014, 818 participants were randomly assigned to the control group (n=279), the POWeR+F group (n=269), or the POWeR+R group (n=270). Weight loss averaged over 12 months was recorded in 666 (81%) participants. The control group lost almost 3 kg over 12 months (crude mean weight: baseline 104·38 kg [SD 21·11; n=279], 6 months 101·91 kg [19·35; n=136], 12 months 101·74 kg [19·57; n=227]). The primary imputed analysis showed that compared with the control group, patients in the POWeR+F group achieved an additional weight reduction of 1·5 kg (95% CI 0·6–2·4; p=0·001) averaged over 12 months, and patients in the POWeR+R group achieved an additional 1·3 kg (0·34–2·2; p=0·007). 21% of patients in the control group had maintained a clinically important 5% weight reduction at month 12, compared with 29% of patients in the POWeR+F group (risk ratio 1·56, 0·96–2·51; p=0·070) and 32% of patients in the POWeR+R group (1·82, 1·31–2·74; p=0·004). The incremental overall cost to the health service per kg weight lost with the POWeR+ interventions versus the control strategy was £18 (95% CI −129 to 195) for POWeR+F and –£25 (−268 to 157) for POWeR+R; the probability of being cost-effective at a threshold of £100 per kg lost was 88% and 98%, respectively. No adverse events were reported. Interpretation Weight loss can be maintained in some individuals by use of novel written material with occasional brief nurse follow-up. However, more people can maintain clinically important weight reductions with a web-based behavioural program and brief remote follow-up, with no increase in health service costs. Future research should assess the extent to which clinically important weight loss can be maintained beyond 1 year

    High vs. Low Initial Oxygen to Improve the Breathing Effort of Preterm Infants at Birth: Study Protocol for a Randomized Controlled Trial

    Get PDF
    Background: Although most preterm infants breathe at birth, their respiratory drive is weak and supplemental oxygen is often needed to overcome hypoxia. This could in turn lead to hyperoxia. To reduce the risk of hyperoxia, currently an initial low oxygen concentration (21–30%) is recommended during stabilization at birth, accepting the risk of a hypoxic period. However, hypoxia inhibits respiratory drive in preterm infants. Starting with a higher level of oxygen could lead to a shorter duration of hypoxia by stimulating breathing effort of preterm infants, and combined with subsequent titration based on oxygen saturation, prolonged hyperoxia might be prevented.Study design: This multi-center randomized controlled trial will include 50 infants with a gestational age between 24 and 30 weeks. Eligible infants will be randomized to stabilization with an initial FiO2 of either 1.0 or 0.3 at birth. Hereafter, FiO2 will be titrated based on the oxygen saturation target range. In both groups, all other interventions during stabilization and thereafter will be similar. The primary outcome is respiratory effort in the first 5 min after birth expressed as average minute volume/kg. Secondary outcomes include inspired tidal volumes/kg, rate of rise to maximum tidal volume/kg, percentage of recruitment breaths with tidal volumes above 8 mL/kg, duration of hypoxia and hyperoxia and plasma levels of markers of oxidative stress (8-iso-prostaglandin F2α).Discussion: Current resuscitation guidelines recommend oxygen titration if infants fail to achieve the 25th percentile of the SpO2 reference ranges. It has become clear that, using this approach, most preterm infants are at risk for hypoxia in the first 5 min after birth, which could suppress the breathing effort. In addition, for compromised preterm infants who need respiratory support at birth, higher SpO2 reference ranges in the first minutes after birth might be needed to prevent prolonged hypoxia. Enhancing breathing effort by achieving an adequate level of oxygenation could potentially lead to a lower incidence of intubation and mechanical ventilation in the delivery room, contributing to a lower risk on lung injury in high-risk preterm infants. Measuring 8-iso-prostaglandin F2α could lead to a reflection of the true amount of oxygen exposure in both study groups
    • …
    corecore