84 research outputs found

    A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Get PDF
    Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102) and sync_2523 (strain CC9311) are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins

    Reduced axonal diameter of peripheral nerve fibres in a mouse model of Rett syndrome

    Get PDF
    Rett syndrome (RTT) is a neurological disorder characterized by motor and cognitive impairment, autonomic dysfunction and a loss of purposeful hand skills. In the majority of cases, typical RTT is caused by de novo mutations in the X-linked gene, MECP2. Alterations in the structure and function of neurons within the central nervous system of RTT patients and Mecp2-null mouse models are well established. In contrast, few studies have investigated the effects of MeCP2-deficiency on peripheral nerves. In this study, we conducted detailed morphometric as well as functional analysis of the sciatic nerves of symptomatic adult female Mecp2+/- mice. We observed a significant reduction in the mean diameter of myelinated nerve fibers in Mecp2+/- mice. In myelinated fibers, mitochondrial densities per unit area of axoplasm were significantly altered in Mecp2+/- mice. However, conduction properties of the sciatic nerve of Mecp2 knockout mice were not different from control. These subtle changes in myelinated peripheral nerve fibers in heterozygous Mecp2 knockout mice could potentially explain some RTT phenotypes

    Computational prediction of the osmoregulation network in Synechococcus sp. WH8102

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osmotic stress is caused by sudden changes in the impermeable solute concentration around a cell, which induces instantaneous water flow in or out of the cell to balance the concentration. Very little is known about the detailed response mechanism to osmotic stress in marine <it>Synechococcus</it>, one of the major oxygenic phototrophic cyanobacterial genera that contribute greatly to the global CO<sub>2 </sub>fixation.</p> <p>Results</p> <p>We present here a computational study of the osmoregulation network in response to hyperosmotic stress of <it>Synechococcus sp </it>strain <it>WH8102 </it>using comparative genome analyses and computational prediction. In this study, we identified the key transporters, synthetases, signal sensor proteins and transcriptional regulator proteins, and found experimentally that of these proteins, 15 genes showed significantly changed expression levels under a mild hyperosmotic stress.</p> <p>Conclusions</p> <p>From the predicted network model, we have made a number of interesting observations about <it>WH8102</it>. Specifically, we found that (i) the organism likely uses glycine betaine as the major osmolyte, and others such as glucosylglycerol, glucosylglycerate, trehalose, sucrose and arginine as the minor osmolytes, making it efficient and adaptable to its changing environment; and (ii) σ<sup>38</sup>, one of the seven types of σ factors, probably serves as a global regulator coordinating the osmoregulation network and the other relevant networks.</p

    Influence of a Guanidine Riboswitch in Bacterial Cells

    Get PDF
    Bacteria live in environments containing complex ecologies of other microbes that communicate and survive through the action of a variety of small metabolic compounds. One common yet relatively unstudied metabolite is guanidine. Although it can be toxic to cells, recent studies have revealed that guanidine may function as a cellular metabolite through a specialized RNA sequence known as a riboswitch. Within our overall project on improving algal productivity, the focus of this study is to: (a) describe various guanidine riboswitch sequences in bacteria that interact with biofuel producing algae; and (b) determine if guanidine has a positive or negative influence on the growth of the bacteria containing these riboswitches. Over 2,000 species across four phyla of bacteria contain genes that help overcome guanidine toxicity. Recently it was discovered that guanidine, a small molecule with three nitrogen linked to a single carbon, regulates some of these genes by specific interactions with a segment of mRNA called a riboswitch. In this investigation, we used the largely uncharacterized cyanobacterium ESFC-1, and others across the four phyla, that contain the guanidine riboswitch, of which there are two subtypes. Both of these two subtypes regulate expression of proteins involved in the export and modification of guanidine inside the bacterial cell. Genome sequence analysis of our guanidine riboswitches indicate that our test bacteria differ in four key highly conserved residues for a guanidine-binding pocket in the model riboswitch. However, structures of the riboswitches may be similar, indicating their functions and guanidine-binding capabilities may be similar

    Reaction of O2 with a di-iron protein generates a mixed valent Fe2+/Fe3+ center and peroxide

    Get PDF
    The gene encoding the cyanobacterial ferritin SynFtn is up-regulated in response to copper stress. Here, we show that, while SynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2 with the di-Fe2+ center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+ form. Iron–O2 chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+ form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2 reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2 bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron–O2 chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not
    • …
    corecore