27 research outputs found

    Characterisation of Carotenoids Involved in the Xanthophyll Cycle

    Get PDF
    Carotenoids are known for versatile roles they play in living organisms; however, their most pivotal function is involvement in scavenging reactive oxygen species (ROS) and photoprotection. In plant kingdom, an important photoprotective mechanism, referred to as the xanthophyll cycle, has been developed by photosynthetic organism to avoid excess light that might lead to photoinhibition and inactivation of photosystems and induce the formation of reactive oxygen species (ROS), resulting in photodamage and long-term changes in the cells caused by oxidative stress. Apart from high-light driven enzymatic conversion of violaxanthin (Viola) to zeaxanthin (Zea) that occurs mostly in higher plants, mosses and lichens, other less known types of the xanthophyll cycle have been hitherto described. The work is aimed at summarising the current knowledge on the pigments engaged in the xanthophyll cycles operating in various organisms

    Protective Role of a Donepezil-Huprine Hybrid against the β-Amyloid (1-42) Effect on Human Erythrocytes

    Get PDF
    Aβ(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aβ(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aβ(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aβ(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aβ(1-42) peptide in human erythrocytes and molecular models

    Arabidopsis PCNAs form complexes with selected D-type cyclins

    Get PDF
    Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the ten cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1 and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of, CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1 and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1 and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes

    Senescence, Stress, and Reactive Oxygen Species

    No full text
    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment

    Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559.

    No full text
    We have found that elevated copper concentrations, apart from the inhibition of oxygen evolution, changed the initial states distribution of the oxygen-evolving complex. Already at low concentrations, copper ions oxidized the low-potential form of cytochrome b (559) and also its high-potential form at higher concentrations at which fluorescence quenching was observed. We suggest that the primary target sites in Photosystem II for copper is tyrosine(z), both cytochrome b (559) forms and chlorophyll(z), and that these sites are the source of the copper-induced fluorescence quenching and oxygen evolution inhibition in Photosystem II

    Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols

    No full text
    Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling

    A rhein-huprine hybrid protects erythrocyte membrane integrity against Alzheimer's disease related Abeta(1-42) peptide

    Full text link
    Alzheimer's disease remains largely unknown, and currently there is no complete cure for the disease. New synthetic approaches have been developed to create multi-target agents, such as RHE-HUP, a rhein-huprine hybrid which can modulate several biological targets that are relevant to the development of the disease. While RHE-HUP has shown in vitro and in vivo beneficial effects, the molecular mechanisms by which it exerts its protective effect on cell membranes have not been fully clarified. To better understand RHE-HUP interactions with cell membranes, we used synthetic membrane models and natural models of human membranes. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. Xray diffraction and differential scanning calorimetry (DSC) results indicated that RHE-HUP was able to interact mainly with DMPC. In addition, scanning electron microscopy (SEM) analysis showed that RHE-HUP modified the normal biconcave shape of erythrocytes inducing the formation of echinocytes. Moreover, the protective effect of RHE-HUP against the disruptive effect of Aβ(1-42) on the studied membrane models was tested. X-ray diffraction experiments showed that RHE-HUP induced a recovery in the ordering of DMPC multilayers after the disruptive effect of Aβ(1-42), confirming the protective role of the hybrid
    corecore