946 research outputs found

    The relationship of dementia prevalence in older adults with intellectual disability (ID) to age and severity of ID

    Get PDF
    Background: Previous research has shown that adults with intellectual disability (ID) may be more at risk of developing dementia in old age than expected. However, the effect of age and ID severity on dementia prevalence rates has never been reported. We investigated the predictions that older adults with ID should have high prevalence rates of dementia that differ between ID severity groups and that the age-associated risk should be shifted to a younger age relative to the general population. Method: A two-staged epidemiological survey of 281 adults with ID without Down syndrome (DS) aged >60 years; participants who screened positive with a memory task, informant-reported change in function or with the Dementia Questionnaire for Persons with Mental Retardation (DMR) underwent a detailed assessment. Diagnoses were made by psychiatrists according to international criteria. Prevalence rates were compared with UK prevalence and European consensus rates using standardized morbidity ratios (SMRs). Results: Dementia was more common in this population (prevalence of 18.3%, SMR 2.77 in those aged >65 years). Prevalence rates did not differ between mild, moderate and severe ID groups. Age was a strong risk factor and was not influenced by sex or ID severity. As predicted, SMRs were higher for younger age groups compared to older age groups, indicating a relative shift in age-associated risk. Conclusions: Criteria-defined dementia is 2–3 times more common in the ID population, with a shift in risk to younger age groups compared to the general population

    A note on dual giant gravitons in AdS4×CP3AdS_{4}\times \mathbb{CP}^{3}

    Get PDF
    We study some of the properties of dual giant gravitons - D2-branes wrapped on an S2AdS4S^{2}\subset AdS_{4} - in type IIA string theory on AdS4×CP3AdS_{4}\times \mathbb{CP}^{3}. In particular we confirm that the spectrum of small fluctuations about the giant is both real and independent of the size of the graviton. We also extend previously developed techniques for attaching open strings to giants to this D2-brane giant and focus on two particular limits of the resulting string sigma model: In the pp-wave limit we quantize the string and compute the spectrum of bosonic excitations while in the semiclassical limit, we read off the fast string Polyakov action and comment on the comparison to the Landau-Lifshitz action for the dual open spin chain.Comment: v3 significantly changed: added coupling to RR 1-form and turned on worldvolume gauge field, computed gauge field fluctuation, added comments on closure of the sl(2) sector and re-written to improve clarity. This version published in JHE

    Unconventional superconductivity in the cage type compound Sc5_5Rh6_6Sn18_{18}

    Full text link
    We have examined the superconducting ground state properties of the caged type compound Sc5_5Rh6_6Sn18_{18} using magnetization, heat capacity, and muon-spin relaxation or rotation (μ\muSR) measurements. Magnetization measurements indicate type-II superconductivity with an upper critical field μ0Hc2(0)\mu_0H_{c2}(0) = 7.24 T. The zero-field cooled and field cooled susceptibility measurements unveil an onset of diamagnetic signal below TcT_{\bf c} = 4.4 K. The interpretation of the heat capacity results below TcT_{\bf c} using the α\alpha-BCS model unveils the value of α\alpha = 2.65, which gives the dimensionless ratio 2Δ(0)/kBTc\Delta(0)/k_B T_{\bf c} = 5.3, intimating that Sc5_5Rh6_6Sn18_{18} is a strong-coupling BCS superconductor. The zero-field μ\muSR measurements in the longitudinal geometry exhibit a signature of a spontaneous appearance of the internal magnetic field below the superconducting transition temperature, indicating that the superconducting state is characterized by the broken time-reversal symmetry (TRS). We have compared the results of broken TRS in Sc5_5Rh6_6Sn18_{18} with that observed in R5_5Rh6_6Sn18_{18} (R = Lu and Y).Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1411.687

    Nodal superconducting gap structure in the quasi-one-dimensional Cs2_2Cr3_3As3_3 investigated using μ\muSR measurements

    Get PDF
    The superconducting ground state of the newly discovered superconductor Cs2_2Cr3_3As3_3 with a quasi-one-dimensional crystal structure (TcT_{\bf c}\sim 2.1(1) K) has been investigated using magnetization and muon-spin relaxation or rotation (μ\muSR), both zero-field (ZF) and transverse-field (TF), measurements. Our ZF μ\muSR measurements reveal the presence of spin fluctuations below 4 K and the ZF relaxation rate (λ\lambda) shows enhancement below TcT_{\bf c}\sim 2.1 K, which might indicate that the superconducting state is unconventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models. Our analysis of the TF μ\muSR results shows that the temperature dependence of the superfluid density is fitted better with a nodal gap structure than an isotropic s-wave model for the superconducting gap. The observation of a nodal gap in Cs2_2Cr3_3As3_3 is consistent with that observed in the isostructural K2_2Cr3_3As3_3 compound through TF μ\muSR measurements. Furthermore, from our TF μ\muSR study we have estimated the magnetic penetration depth λL\lambda_{\mathrm{L}}(0)(0) = 954 nm, superconducting carrier density ns=4.98×1026 n_s = 4.98 \times 10^{26}~ m3^{-3}, and carrier's effective-mass enhancement mm^* = 1.61me_{e}.Comment: 7 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1505.0574

    Crystal field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3

    Get PDF
    Inelastic neutron scattering experiments have been carried out to determine the crystal field states of the Kondo lattice heavy fermions CeRuSn3 and CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space group Pm-3n) in which the Ce atoms occupy two distinct crystallographic sites with cubic (m-3) and tetragonal (-4m.2) point symmetries. The INS data of CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV which is accounted by a model based on crystal electric field (CEF) excitations. On the other hand, the INS data of isostructural CeRhSn3 reveal three CEF excitations around 7.0, 12.2 and 37.2 meV. The neutron intensity sum rule indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3+ state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds are deduced. We estimate the Kondo temperature T_K = 3.1(2) K for CeRuSn3 from neutron quasielastic linewidth in excellent agreement with that determined from the scaling of magnetoresistance which gives T_K = 3.2(1) K. For CeRhSn3 the neutron quasielastic linewidth gives T_K = 4.6 K. For both CeRuSn3 and CeRhSn3, the ground state of Ce3+ turns out to be a quartet for the cubic site and a doublet for the tetragonal site.Comment: 12 pages, 13 figures, 2 tables, to appear in Phys. Rev.

    Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18

    Get PDF
    The superconducting state of the caged type compound Lu5Rh6Sn18 has been investigated by using magnetization, heat capacity, and muon spin relaxation or rotation (?SR) measurements, and the results interpreted on the basis of the group theoretical classifications of the possible pairing symmetries and a simple model of the resulting quasiparticle spectra. Our zero-field ?SR measurements clearly reveal the spontaneous appearance of an internal magnetic field below the transition temperature, which indicates that the superconducting state in this material is characterized by broken time-reversal symmetry. Further, the analysis of the temperature dependence of the magnetic penetration depth measured using the transverse-field ?SR measurements suggests an isotropic s?wave character for the superconducting gap. This is in agreement with the heat capacity behavior, and we show that it can be interpreted in terms of a nonunitary triplet state with point nodes and an open Fermi surface

    Searching for triplet superconductivity in the Quasi-One-Dimensional K2Cr3As3

    Full text link
    The superconducting state of the newly discovered superconductor K2_2Cr3_3As3_3 with a quasi-one-dimensional crystal structure (TcT_{\bf c}\sim 6 K) has been investigated by using magnetization and muon-spin relaxation or rotation (μ\muSR) measurements. Our analysis of the temperature dependence of the superfluid density obtained from the transverse field (TF) μ\muSR measurements fit very well to an isotropic ss-wave character for the superconducting gap. Furthermore a similarly good fit can also be obtained using a dd-wave model with line nodes. Our zero-field μ\muSR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field near the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K2_2Cr3_3As3_3. Furthermore, from our TF μ\muSR study the magnetic penetration depth λL\lambda_L, superconducting carrier density nsn_s, and effective-mass enhancement mm^* have been estimated to be λL(0)\lambda_L(0) = 454(4) nm, nsn_s = 2.4×\times1027^{27} carriers/m3^3, and mm^* = 1.75 mem_e, respectively.Comment: 5 pages, 4 figure

    Field tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al (NMR, NQR) investigations

    Full text link
    We report magnetization, specific heat, and NMR investigations on YFe2Al10 over a wide range in temperature and magnetic field and zero field (NQR) measurements. Magnetic susceptibility, specific heat and spin-lattice relaxation rate divided by T (1/T1T) follow a weak power law (T^-0.4) temperature dependence, which is a signature of critical fluctuations of Fe moments. The value of the Sommerfeld-Wilson ratio and linear relation between 1/T1T and chi(T) suggest the existence of ferromagnetic correlations in this system. No magnetic ordering down to 50 mK in Cp(T) and the unusual temperature and field scaling of the bulk and NMR data are associated with a magnetic instability which drives the system to quantum criticality. The magnetic properties of the system are tuned by field wherein ferromagnetic fluctuations are suppressed and a crossover from quantum critical to FL behavior is observed with increasing magnetic field
    corecore