1,063 research outputs found

    AN ADAPTED INTERVENTION RESEARCH MODEL: SUGGESTIONS FOR RESEARCH AND PRACTICE

    Get PDF
    The various existing models of intervention research all have advantages and disadvantages.Postgraduate students, and especially doctoral students in Social Work, have on many occasionsexpressed their dilemma in choosing a specific model of research for intervention procedures.Therefore, many have used the intervention research model or the developmental research andutilisation model, while others have adapted these models to suit their specific researchendeavours. After making a careful study of these two models, an adapted intervention researchmodel will be suggested for use in studies of a combined research and practice nature

    The relationship of dementia prevalence in older adults with intellectual disability (ID) to age and severity of ID

    Get PDF
    Background: Previous research has shown that adults with intellectual disability (ID) may be more at risk of developing dementia in old age than expected. However, the effect of age and ID severity on dementia prevalence rates has never been reported. We investigated the predictions that older adults with ID should have high prevalence rates of dementia that differ between ID severity groups and that the age-associated risk should be shifted to a younger age relative to the general population. Method: A two-staged epidemiological survey of 281 adults with ID without Down syndrome (DS) aged >60 years; participants who screened positive with a memory task, informant-reported change in function or with the Dementia Questionnaire for Persons with Mental Retardation (DMR) underwent a detailed assessment. Diagnoses were made by psychiatrists according to international criteria. Prevalence rates were compared with UK prevalence and European consensus rates using standardized morbidity ratios (SMRs). Results: Dementia was more common in this population (prevalence of 18.3%, SMR 2.77 in those aged >65 years). Prevalence rates did not differ between mild, moderate and severe ID groups. Age was a strong risk factor and was not influenced by sex or ID severity. As predicted, SMRs were higher for younger age groups compared to older age groups, indicating a relative shift in age-associated risk. Conclusions: Criteria-defined dementia is 2–3 times more common in the ID population, with a shift in risk to younger age groups compared to the general population

    A note on dual giant gravitons in AdS4×CP3AdS_{4}\times \mathbb{CP}^{3}

    Get PDF
    We study some of the properties of dual giant gravitons - D2-branes wrapped on an S2AdS4S^{2}\subset AdS_{4} - in type IIA string theory on AdS4×CP3AdS_{4}\times \mathbb{CP}^{3}. In particular we confirm that the spectrum of small fluctuations about the giant is both real and independent of the size of the graviton. We also extend previously developed techniques for attaching open strings to giants to this D2-brane giant and focus on two particular limits of the resulting string sigma model: In the pp-wave limit we quantize the string and compute the spectrum of bosonic excitations while in the semiclassical limit, we read off the fast string Polyakov action and comment on the comparison to the Landau-Lifshitz action for the dual open spin chain.Comment: v3 significantly changed: added coupling to RR 1-form and turned on worldvolume gauge field, computed gauge field fluctuation, added comments on closure of the sl(2) sector and re-written to improve clarity. This version published in JHE

    Antisite Disorder-induced Exchange Bias Effect in Multiferroic Y2CoMnO6

    Full text link
    Exchange bias effect in the ferromagnetic double perovskite compound Y2_2CoMnO6_6, which is also a multiferroic, is reported. The exchange bias, observed below 8~K, is explained as arising due to the interface effect between the ferromagnetic and antiferromagnetic clusters created by {\it antisite} disorder in this material. Below 8~K, prominent ferromagnetic hysteresis with metamagnetic "steps" and significant coercive field, HcH_c \approx 10~kOe are observed in this compound which has a TcT_c \approx 75~K. A model based on growth of ferromagnetic domains overcoming the elastic energy of structurally pinned magnetic interfaces, which closely resembles martensitic-like transitions, is adapted to explain the observed effects. The role of {\it antisite} disorder in creating the domain structure leading to exchange bias effect is highlighted in the present work.Comment: 4 pages two-column, 4 figures, accepted to Appl. Phys. Let

    Spin Freezing in the Spin Liquid Compound FeAl2O4

    Full text link
    Spin freezing in the AA-site spinel FeAl2_2O4_4 which is a spin liquid candidate is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl2_2O4_4 differs significantly from that of a canonical spin glass which is also supported by analysis of the nonlinear magnetic susceptibility term χ3(T)\chi_3 (T). Through the power-law analysis of χ3(T)\chi_3 (T), a spin-freezing temperature, TgT_g = 11.4±\pm0.9~K and critical exponent, γ\gamma = 1.48±\pm0.59 are obtained. Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl2_2O4_4, however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight to the magnetic nature of this frustrated magnet and reveals unconventional glassy behaviour. Combining our results, we arrive at the conclusion that the present sample of FeAl2_2O4_4 consists of a majority spin liquid phase with "glassy" regions embedded.Comment: 5 pages, 6 figs, 2-column, Accepted to Phys. Rev.

    Double-phase transition and giant positive magnetoresistance in the quasi-skutterudite Gd3_3Ir4_4Sn13_{13}

    Full text link
    The magnetic, thermodynamic and electrical/thermal transport properties of the caged-structure quasi-skutterudite Gd3_3Ir4_4Sn13_{13} are re-investigated. The magnetization M(T)M(T), specific heat Cp(T)C_p(T) and the resistivity ρ(T)\rho(T) reveal a double-phase transition -- at TN1T_{N1}\sim 10~K and at TN2T_{N2}\sim 8.8~K -- which was not observed in the previous report on this compound. The antiferromagnetic transition is also visible in the thermal transport data, thereby suggesting a close connection between the electronic and lattice degrees of freedom in this Sn-based quasi-skutterudite. The temperature dependence of ρ(T)\rho(T) is analyzed in terms of a power-law for resistivity pertinent to Fermi liquid picture. Giant, positive magnetoresistance (MR) \approx 80%\% is observed in Gd3_3Ir4_4Sn13_{13} at 2~K with the application of 9~T. The giant MR and the double magnetic transition can be attributed to the quasi-cages and layered antiferromagnetic structure of Gd3_3Ir4_4Sn13_{13} vulnerable to structural distortions and/or dipolar or spin-reorientation effects. The giant value of MR observed in this class of 3:4:13 type alloys, especially in a Gd-compound, is the highlight of this work.Comment: 20 pages single column, 7 figures, 1 table; Accepted to J. Appl. Phys., 201

    Field tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al (NMR, NQR) investigations

    Full text link
    We report magnetization, specific heat, and NMR investigations on YFe2Al10 over a wide range in temperature and magnetic field and zero field (NQR) measurements. Magnetic susceptibility, specific heat and spin-lattice relaxation rate divided by T (1/T1T) follow a weak power law (T^-0.4) temperature dependence, which is a signature of critical fluctuations of Fe moments. The value of the Sommerfeld-Wilson ratio and linear relation between 1/T1T and chi(T) suggest the existence of ferromagnetic correlations in this system. No magnetic ordering down to 50 mK in Cp(T) and the unusual temperature and field scaling of the bulk and NMR data are associated with a magnetic instability which drives the system to quantum criticality. The magnetic properties of the system are tuned by field wherein ferromagnetic fluctuations are suppressed and a crossover from quantum critical to FL behavior is observed with increasing magnetic field
    corecore