34 research outputs found
Recommended from our members
Imaging stress and magnetism at high pressures using a nanoscale quantum sensor.
Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven [Formula: see text] phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures
Transparent dense sodium
Under pressure, metals exhibit increasingly shorter interatomic distances.
Intuitively, this response is expected to be accompanied by an increase in the
widths of the valence and conduction bands and hence a more pronounced
free-electron-like behaviour. But at the densities that can now be achieved
experimentally, compression can be so substantial that core electrons overlap.
This effect dramatically alters electronic properties from those typically
associated with simple free-electron metals such as lithium and sodium, leading
in turn to structurally complex phases and superconductivity with a high
critical temperature. But the most intriguing prediction - that the seemingly
simple metals Li and Na will transform under pressure into insulating states,
owing to pairing of alkali atoms - has yet to be experimentally confirmed. Here
we report experimental observations of a pressure-induced transformation of Na
into an optically transparent phase at 200 GPa (corresponding to 5.0-fold
compression). Experimental and computational data identify the new phase as a
wide bandgap dielectric with a six-coordinated, highly distorted
double-hexagonal close-packed structure. We attribute the emergence of this
dense insulating state not to atom pairing, but to p-d hybridizations of
valence electrons and their repulsion by core electrons into the lattice
interstices. We expect that such insulating states may also form in other
elements and compounds when compression is sufficiently strong that atomic
cores start to overlap strongly.Comment: Published in Nature 458, 182-185 (2009
Simple Metals at High Pressure
In this lecture we review high-pressure phase transition sequences exhibited
by simple elements, looking at the examples of the main group I, II, IV, V, and
VI elements. General trends are established by analyzing the changes in
coordination number on compression. Experimentally found phase transitions and
crystal structures are discussed with a brief description of the present
theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice
course on High-Pressure Crystallography in June 2009, Sicily, Ital
Electronic Properties and Metrology Applications of the Diamond NV- Center under Pressure
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the optical and spin resonances of the NV- center are observed under hydrostatic pressures up to 60Â GPa. Our results motivate powerful new techniques to measure pressure and image high-pressure magnetic and electric phenomena. Additionally, molecular orbital analysis and semiclassical calculations provide insight into the effects of compression on the electronic orbitals of the NV- center
Anomalous High-Temperature Superconductivity in YH6
Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-T-C superconductors-yttrium hexahydride Im3 over bar m-YH6 is reported, which displays a superconducting transition at approximate to 224 K at 166 GPa. The extrapolated upper critical magnetic field B-c2(0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of T-C in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current I-C and its density J(C) may exceed 1.75 A and 3500 A mm(-2) at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity
Phonon density of states of iron up to 153 gigapascals
We report phonon densities of states (DOS) of iron measured by nuclear resonant inelastic x-ray scattering to 153 gigapascals and calculated from ab initio theory. Qualitatively, they are in agreement, but the theory predicts density at higher energies. From the DOS, we derive elastic and thermodynamic parameters of iron, including shear modulus, compressional and shear velocities, heat capacity, entropy, kinetic energy, zero-point energy, and Debye temperature. In comparison to the compressional and shear velocities from the preliminary reference Earth model (PREM) seismic model, our results suggest that Earth's inner core has a mean atomic number equal to or higher than pure iron, which is consistent with an iron-nickel alloy