183 research outputs found
Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways
Dexmedetomidine pharmacokineticpharmacodynamic modelling in healthy volunteers:1. Influence of arousal on bispectral index and sedation
Background. Dexmedetomidine, a selective alpha(2)-adrenoreceptor agonist, has unique characteristics, such as maintained respiratory drive and production of arousable sedation. We describe development of a pharmacokinetic-pharmacodynamic model of the sedative properties of dexmedetomidine, taking into account the effect of stimulation on its sedative properties.
Methods. In a two-period, randomized study in 18 healthy volunteers, dexmedetomidine was delivered in a step-up fashion by means of target-controlled infusion using the Dyck model. Volunteers were randomized to a session without background noise and a session with pre-recorded looped operating room background noise. Exploratory pharmacokineticpharmacodynamic modelling and covariate analysis were conducted in NONMEM using bispectral index (BIS) monitoring of processed EEG.
Results. We found that both stimulation at the time of Modified Observer's Assessment of Alertness/Sedation (MOAA/S) scale scoring and the presence or absence of ambient noise had an effect on the sedative properties of dexmedetomidine. The stimuli associated with MOAA/S scoring increased the BIS of sedated volunteers because of a transient 170% increase in the effect-site concentration necessary to reach half of the maximal effect. In contrast, volunteers deprived of ambient noise were more resistant to dexmedetomidine and required, on average, 32% higher effect-site concentrations for the same effect as subjects who were exposed to background operating room noise.
Conclusions. The new pharmacokinetic-pharmacodynamic models might be used for effect-site rather than plasma concentration target-controlled infusion for dexmedetomidine in clinical practice, thereby allowing tighter control over the desired level of sedation
Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms
Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitative features estimated from a pooled dataset of 204 EEG recordings from 66 healthy adult volunteers who received either propofol, dexmedetomidine, or sevoflurane (all with and without remifentanil) were used in a machine learning based automated system to estimate the depth of sedation. Model training and evaluation were performed using leave-one-out cross validation methodology. We trained four machine learning models to predict sedation levels and evaluated the influence of remifentanil, age, and sex on the prediction performance. The area under the receiver-operator characteristic curve (AUC) was used to assess the performance of the prediction model. The ensemble tree with bagging outperformed other machine learning models and predicted sedation levels with an AUC = 0.88 (0.81-0.90). There were significant differences in the prediction probability of the automated systems when trained and tested across different age groups and sex. The performance of the EEG based sedation level prediction system is drug, sex, and age specific. Nonlinear machine-learning models using quantitative EEG features can accurately predict sedation levels. The results obtained in this study may provide a useful reference for developing next generation EEG based sedation level prediction systems using advanced machine learning algorithms
What is the potential benefit of pre-hospital extracorporeal cardiopulmonary resuscitation for patients with an out-of-hospital cardiac arrest?:A predictive modelling study
AIM: In this predictive modelling study we aimed to investigate how many patients with an out-of-hospital cardiac arrest (OHCA) would benefit from pre-hospital as opposed to in-hospital initiation of extracorporeal cardiopulmonary resuscitation (ECPR).METHODS: A temporal spatial analysis of Utstein data was performed for all adult patients with a non-traumatic OHCA attended by three emergency medical services (EMS) covering the north of the Netherlands during a one-year period. Patients were considered potentially eligible for ECPR if they had a witnessed arrest with immediate bystander CPR, an initial shockable rhythm (or signs of life during resuscitation) and could be presented in an ECPR-centre within 45 minutes of the arrest. Endpoint of interest was defined as the hypothetical number of ECPR eligible patients after 10, 15 and 20 minutes of conventional CPR and upon (hypothetical) arrival in an ECPR-centre as a fraction of the total number of OHCA patients attended by EMS.RESULTS: During the study period 622 OHCA patients were attended, of which 200 (32%) met ECPR eligibility criteria upon EMS arrival. The optimal transition point between conventional CPR and ECPR was found to be after 15 minutes. Hypothetical intra-arrest transport of all patients in whom no return of spontaneous circulation (ROSC) was obtained after that point (n = 84) would have yielded 16/622 (2.5%) patients being potentially ECPR eligible upon hospital arrival (average low-flow time 52 minutes), whereas on-scene initiation of ECPR would have resulted in 84/622 (13.5%) potential candidates (average estimated low-flow time 24 minutes before cannulation).CONCLUSION: Even in healthcare systems with relatively short transport distances to hospital, consideration should be given to pre-hospital initiation of ECPR for OHCA as it shortens low-flow time and increases the number of potentially eligible patients.</p
Collateral Ventilation Measurement Using Chartis Procedural Sedation vs General Anesthesia:procedural sedation versus general anesthesia
BACKGROUND: Absence of interlobar collateral ventilation is key to successful endobronchial valve treatment in patients with severe emphysema and can be functionally assessed by using the Chartis measurement. This system has been validated during spontaneous breathing, undergoing procedural sedation (PS), but can also be performed under general anesthesia. Performing the Chartis measurement under PS is often challenging because of coughing, mucus secretion, and difficulties in maintaining an adequate level of sedation. The objective of this study was to investigate whether there is a difference in Chartis measurement outcomes between PS and general anesthesia.
METHODS: In this prospective study, patients underwent Chartis measurements under both PS and general anesthesia. Study outcomes were Chartis measurement duration, number of measurements, feasibility, and success rate.
RESULTS: The study included 30 patients with severe emphysema (mean age, 62 years; median FEV1, 29% of predicted). Chartis measurement duration was significantly longer under PS than under general anesthesia (mean, 20.3 +/- 4.2 min vs 15.1 +/- 4.4 min; P < .001). There was no difference in the number (median [range]) of measurements performed (2 [1-3] for PS vs 1 [1-3] for general anesthesia; P= 1.00). Chartis measurement was more feasible during general anesthesia (median sum of all feasibility scores, 12 [range, 6-26] for PS vs 7 [5-13] for general anesthesia; P < .001). There was no statistical difference in success rate: 77% of PS cases vs 97% of general anesthesia cases (P = .07).
CONCLUSIONS: This study found that Chartis measurement under general anesthesia is faster and more feasible to perform compared with performance with PS, without affecting measurement outcomes
Comparison of haemodynamic- and electroencephalographic-monitored effects evoked by four combinations of effect-site concentrations of propofol and remifentanil, yielding a predicted tolerance to laryngoscopy of 90%
This prospective study evaluates haemodynamic and electroencephalographic effects observed when administering four combinations of effect-site concentrations of propofol (Ce-PROP) and remifentanil (Ce-REMI), all yielding a single predicted probability of tolerance of laryngoscopy of 90% (P-TOL = 90%) according to the Bouillon interaction model. We aimed to identify combinations of Ce-PROP and Ce-REMI along a single isobole of P-TOL that result in favourable hypnotic and haemodynamic conditions. This knowledge could be of advantage in the development of drug advisory monitoring technology. 80 patients (18-90 years of age, ASA I-III) were randomized into four groups and titrated towards Ce-PROP (Schnider model, ug.ml(-1)) and Ce-REMI (Minto model, ng.ml(-1)) of respectively 8.6 and 1, 5.9 and 2, 3.6 and 4 and 2.0 and 8. After eleven minutes of equilibration, baseline measurements of haemodynamic endpoints and bispectral index were compared with three minutes of responsiveness measurements after laryngoscopy. Before laryngoscopy, bispectral index differed significantly (p < 0.0001) between groups in concordance with Ce-PROP. Heart rate decreased with increasing Ce-REMI (p = 0.001). The haemodynamic and arousal responses evoked by laryngoscopy were not significantly different between groups, but Ce-PROP = 3.6 mu g.ml(-1) and Ce-REMI = 4 ng.ml(-1) evoked the lowest median value for increment HR and increment SAP after laryngoscopy. This study provides clinical insight on the haemodynamic and hypnotic consequences, when a model based predicted P-TOL is used as a target for combined effect-site controlled target- controlled infusion of propofol and remifentanil. Heart rate and bispectral index were significantly different between groups despite a theoretical equipotency for P-TOL, suggesting that each component of the anaesthetic state (immobility, analgesia, and hypnotic drug effect) should be considered as independent neurophysiological and pharmacological phenomena. However, claims of (in)accuracy of the predicted P-TOL must be considered preliminary because larger numbers of observations are required for that goal
Blood-based metabolic signatures in Alzheimer's disease
Introduction Identification of blood-based metabolic changes might provide early and easy-to-obtain biomarkers. Methods We included 127 Alzheimer's disease (AD) patients and 121 control subjects with cerebrospinal fluid biomarker-confirmed diagnosis (cutoff tau/amyloid β peptide 42: 0.52). Mass spectrometry platforms determined the concentrations of 53 amine compounds, 22 organic acid compounds, 120 lipid compounds, and 40 oxidative stress compounds. Multiple signatures were assessed: differential expression (nested linear models), classification (logistic regression), and regulatory (network extraction). Results Twenty-six metabolites were differentially expressed. Metabolites improved the classification performance of clinical variables from 74% to 79%. Network models identified five hubs of metabolic dysregulation: tyrosine, glycylglycine, glutamine, lysophosphatic acid C18:2, and platelet-activating factor C16:0. The metabolite network for apolipoprotein E (APOE) ε4 negative AD patients was less cohesive compared with the network for APOE ε4 positive AD patients. Discussion Multiple signatures point to various promising peripheral markers for further validation. The network differences in AD patients according to APOE genotype may reflect different pathways to AD
Driving pressure during general anesthesia for open abdominal surgery (DESIGNATION) : study protocol of a randomized clinical trial
Background
Intraoperative driving pressure (Delta P) is associated with development of postoperative pulmonary complications (PPC). When tidal volume (V-T) is kept constant, Delta P may change according to positive end-expiratory pressure (PEEP)-induced changes in lung aeration. Delta P may decrease if PEEP leads to a recruitment of collapsed lung tissue but will increase if PEEP mainly causes pulmonary overdistension. This study tests the hypothesis that individualized high PEEP, when compared to fixed low PEEP, protects against PPC in patients undergoing open abdominal surgery.
Methods
The "Driving prESsure durIng GeNeral AnesThesIa for Open abdomiNal surgery trial" (DESIGNATION) is an international, multicenter, two-group, double-blind randomized clinical superiority trial. A total of 1468 patients will be randomly assigned to one of the two intraoperative ventilation strategies. Investigators screen patients aged >= 18 years and with a body mass index <= 40 kg/m(2), scheduled for open abdominal surgery and at risk for PPC. Patients either receive an intraoperative ventilation strategy with individualized high PEEP with recruitment maneuvers (RM) ("individualized high PEEP") or one in which PEEP of 5 cm H2O without RM is used ("low PEEP"). In the "individualized high PEEP" group, PEEP is set at the level at which Delta P is lowest. In both groups of the trial, V-T is kept at 8 mL/kg predicted body weight. The primary endpoint is the occurrence of PPC, recorded as a collapsed composite of adverse pulmonary events. Discussion DESIGNATION will be the first randomized clinical trial that is adequately powered to compare the effects of individualized high PEEP with RM versus fixed low PEEP without RM on the occurrence of PPC after open abdominal surgery. The results of DESIGNATION will support anesthesiologists in their decisions regarding PEEP settings during open abdominal surgery
Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae
Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1
Prospective study comparing skin impedance with EEG parameters during the induction of anaesthesia with fentanyl and etomidate
<p>Abstract</p> <p>Objective</p> <p>Sympathetic stimulation leads to a change in electrical skin impedance. So far it is unclear whether this effect can be used to measure the effects of anaesthetics during general anaesthesia. The aim of this prospective study is to determine the electrical skin impedance during induction of anaesthesia for coronary artery bypass surgery with fentanyl and etomidate.</p> <p>Methods</p> <p>The electrical skin impedance was measured with the help of an electro-sympathicograph (ESG). In 47 patients scheduled for elective cardiac surgery, anaesthesia was induced with intravenous fentanyl 10 μg/kg and etomidate 0.3 mg/kg. During induction, the ESG (Electrosympathicograph), BIS (Bispectral IndeX), BP (arterial blood pressure) and HR (heart rate) values of each patient were recorded every 20 seconds. The observation period from administration of fentanyl to intubation for surgery lasted 4 min.</p> <p>Results</p> <p>The ESG recorded significant changes in the electrical skin impedance after administration of fentanyl and etomidate(p < 0.05). During induction of anaesthesia, significant changes of BIS, HR and blood pressure were observed as well (p < 0.05).</p> <p>Conclusions</p> <p>The electrical skin impedance measurement may be used to monitor the effects of anesthetics during general anaesthesia.</p
- …