2 research outputs found
The Theoretical Description for Chlorantraniliprole Electrochemical Determination, Assisted by Squaraine Dye – Nano-CuS Composite
The theoretical description for the chlorantraniliprole electrochemical determination, assisted by the hybrid composite of squaraine dye with CuS nanoparticles has been described. The correspondent reaction mechanism has been proposed, and the correspondent mathematical model has been developed and analyzed by means of linear stability theory and bifurcation analysis. It has been shown that the chlorantraniprole electrochemical anodical determination on high potential may be efficiently provided by cupper sulfide nanoparticles, stabilized by the squaraine dye. On the other hand, the oscillatory and monotonic instability is also possible, being caused by DEL influences of the electrochemical stage.
DOI: http://dx.doi.org/10.17807/orbital.v13i3.151
Theoretical Description for Omeprazole Cathodical Electrochemical Determination, Assisted by Omeprazole Electrochemical Determination, Assisted by the Composite Poly(1,2,4-triazole) – VO(OH)
Abstract: In this work, we describe theoretically the possibility of omeprazole electrochemical determination, assisted by the composite containing vanadium oxyhydroxide as an active substance and the polymer of 1,2,4-triazolic derivative as a mediator. The omeprazole molecule undergoes a sulfoxide to sulfide reduction process over a trivalent vanadium compound. The vanadium oxyhydroxide, at its turn, may be oxidized to a tetravalent state, represented in two forms. The electroanalytical process behavior will be illustrated by a trivariate equation-set, analysis of which confirms the efficiency of the composite of poly (1,2,4-triazole) with VO(OH). Vanadium (III) oxyhydroxide may be efficiently used for omeprazole detection both in pharmaceutical formulations, food, and biological liquids