568 research outputs found

    Heat Capacity in Magnetic and Electric Fields Near the Ferroelectric Transition in Tri-Glycine Sulfate

    Full text link
    Specific-heat measurements are reported near the Curie temperature (TCT_C~= 320 K) on tri-glycine sulfate. Measurements were made on crystals whose surfaces were either non-grounded or short-circuited, and were carried out in magnetic fields up to 9 T and electric fields up to 220 V/cm. In non-grounded crystals we find that the shape of the specific-heat anomaly near TCT_C is thermally broadened. However, the anomaly changes to the characteristic sharp λ\lambda-shape expected for a continuous transition with the application of either a magnetic field or an electric field. In crystals whose surfaces were short-circuited with gold, the characteristic λ\lambda-shape appeared in the absence of an external field. This effect enabled a determination of the critical exponents above and below TCT_C, and may be understood on the basis that the surface charge originating from the pyroelectric coefficient, dP/dTdP/dT, behaves as if shorted by external magnetic or electric fields.Comment: 4 Pages, 4 Figures. To Appear in Applied Physics Letters_ January 200

    Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2

    Full text link
    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohm's Law and Newton's Law of Cooling, and fitting this model to experimental data. This threshold switching is the 'soft breakdown' observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to 'ON' or 'SET' switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.Comment: 13 pages, 2 figure

    Thermodynamics of Ferrotoroidic Materials: Toroidocaloric Effect

    Full text link
    The three primary ferroics, namely ferromagnets, ferroelectrics and ferroelastics exhibit corresponding large (or even giant) magnetocaloric,electrocaloric and elastocaloric effects when a phase transition is induced by the application of an appropriate external field. Recently the suite of primary ferroics has been extended to include ferrotoroidic materials in which there is an ordering of toroidic moments in the form of magnetic vortex-like structures, examples being LiCo(PO_4)_3 and Ba_2CoGe_2O_7. In the present work we formulate the thermodynamics of ferrotoroidic materials. Within a Landau free energy framework we calculate the toroidocaloric effect by quantifying isothermal entropy change (or adiabatic temperature change) in the presence of an applied toroidic field when usual magnetization and polarization may also be present simultaneously. We also obtain a nonlinear Clausius-Clapeyron relation for phase coexistence.Comment: 10 pages, 5 Figure

    Bichiral structure of feroelectric domain wall driven by flexoelectricity

    Get PDF
    The influence of flexoelectric coupling on the internal structure of neutral domain walls in tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180-degree walls which are oblique with respect to the cubic crystallographic axes, while {100} and {110} walls stay "untouched". Being of the Ising type in the absence of the flexoelectric interaction, the oblique domain walls acquire a new polarization component with a structure qualitatively different from the classical Bloch-wall structure. In contrast to the Bloch-type walls, where the polarization vector draws a helix on passing from one domain to the other, in the flexoeffect-affected wall, the polarization rotates in opposite directions on the two sides of the wall and passes through zero in its center. Since the resulting polarization profile is invariant upon inversion with respect to the wall center it does not brake the wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric coupling lower the domain wall energy and gives rise to its additional anisotropy that is comparable to that conditioned by the elastic anisotropy. The atomic orderof- magnitude estimates shows that the new polarization component P2 may be comparable with spontaneous polarization Ps, thus suggesting that, in general, the flexoelectric coupling should be mandatory included in domain wall simulations in ferroelectrics. Calculations performed for barium titanate yields the maximal value of the P2, which is much smaller than that of the spontaneous polarization. This smallness is attributed to an anomalously small value of a component of the "strain-polarization" elecrostictive tensor in this material

    Universal Properties of Ferroelectric Domains

    Full text link
    Basing on Ginzburg-Landau approach we generalize the Kittel theory and derive the interpolation formula for the temperature evolution of a multi-domain polarization profile P(x,z). We resolve the long-standing problem of the near-surface polarization behavior in ferroelectric domains and demonstrate the polarization vanishing instead of usually assumed fractal domain branching. We propose an effective scaling approach to compare the properties of different domain-containing ferroelectric plates and films.Comment: Phys. Rev. Lett. to be publishe

    Equilibrium and Stability of Polarization in Ultrathin Ferroelectric Films with Ionic Surface Compensation

    Full text link
    Thermodynamic theory is developed for the ferroelectric phase transition of an ultrathin film in equilibrium with a chemical environment that supplies ionic species to compensate its surface. Equations of state and free energy expressions are developed based on Landau-Ginzburg-Devonshire theory, using electrochemical equilibria to provide ionic compensation boundary conditions. Calculations are presented for a monodomain PbTiO3_3 (001) film coherently strained to SrTiO3_3 with its exposed surface and its electronically conducting bottom electrode in equilibrium with a controlled oxygen partial pressure. The stability and metastability boundaries of phases of different polarization are determined as a function of temperature, oxygen partial pressure, and film thickness. Phase diagrams showing polarization and internal electric field are presented. At temperatures below a thickness-dependent Curie point, high or low oxygen partial pressure stabilizes positive or negative polarization, respectively. Results are compared to the standard cases of electronic compensation controlled by either an applied voltage or charge across two electrodes. Ionic surface compensation through chemical equilibrium with an environment introduces new features into the phase diagram. In ultrathin films, a stable non-polar phase can occur between the positive and negative polar phases when varying the external chemical potential at fixed temperature, under conditions where charged surface species are not present in sufficient concentration to stabilize a polar phase.Comment: 53 pages, 24 figure

    Domain Dynamics in Piezoresponse Force Microscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure

    Full text link
    Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section is developed and used for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the domain nucleation and growth, consistent with efficient screening of depolarization field within the material. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.Comment: 17 pages, 3 figures, 2 Appendices, to be submmited to Appl. Phys. Let

    Quantum ferroelectric instabilities in superconducting SrTiO3

    Get PDF
    We examine the effects of strain and cation substitution on the superconducting phase of polar semiconductors near a ferroelectric quantum phase transition with a model that combines a strong coupling theory of superconductors with a standard microscopic framework for displacive polar modes coupled to strain degrees of freedom. Our calculations reveal that the superconducting transition temperature Tc is enhanced by proximity to the ferroelectric instability from the disordered side, while it is generally suppressed in the ordered phase due to its increase in dielectric stiffness and a reduction of critical fluctuations from dipolar induced anisotropies. The condensation of the pairing phonon excitations generates a kink in Tc at a charge density that is generally lower than that of the quantum critical point (QCP) and where both superconducting and ferroelectric orders set in. We apply our model to SrTiO_3 and find that the antiadiabatic limit places the kink nearly at its QCP. As the QCP is pushed to higher charge densities with either tuning parameter, we find that the dome narrows and sharpens. Our model is in qualitative and fair quantitative agreement with the recent observation of overlapping ferroelectric-like and superconducting instabilities in n-doped Sr_(1-x)Ca_xTiO_3 and strain tuning of Tc in n-doped SrTiO_3. We compare our results to previous models invoking order-disorder lattice dynamics to describe the pairing excitations.Universidad de Costa Rica/[816-B7-601]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA

    Domain enhanced interlayer coupling in ferroelectric/paraelectric superlattices

    Full text link
    We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlattices.Comment: Latest version as was published in PR
    • …
    corecore