2,865 research outputs found
Optimization of composite structures
Structural optimization is introduced and examples which illustrate potential problems associated with optimized structures are presented. Optimized structures may have very low load carrying ability for an off design condition. They tend to have multiple modes of failure occurring simultaneously and can, therefore, be sensitive to imperfections. Because composite materials provide more design variables than do metals, they allow for more refined tailoring and more extensive optimization. As a result, optimized composite structures can be especially susceptible to these problems
Advanced structural sizing methodology
Research in computerized structural sizing technology was reviewed. Areas covered include: overall design; structural subassembly design; thermal structures; and stiffened panels. In each case, sample results are presented
Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on simplified buckling equations
An analytical procedure is presented for designing hat stiffened and corrugated panels made of composite material and subjected to longitudinal (in the direction of the stiffeners) compression and shear loadings. The procedure is based on nonlinear mathematical programming techniques and a simplified set of buckling equations. Design requirements considered are buckling, strength, and extensional and shear stiffness. The effects of specified thickness, variation of cross-section dimensions, stiffness requirements, local buckling boundary conditions, and the effect of combined compression and shear loadings are shown
PASCO: Structural panel analysis and sizing code, capability and analytical foundations
A computer code denoted PASCO which can be used for analyzing and sizing uniaxially-stiffened composite panels is described. Buckling and vibration analyses are carried out with a linked-plate analysis computer code denoted VIPASA, which is incorporated in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also incorporated in PASCO. Design requirements considered are initial buckling, material strength, stiffness, and vibration frequency. The capability of the PASCO computer code and the approach used in the structural analysis and sizing are described
Computational structural mechanics: A new activity at the NASA Langley Research Center
Complex structures considered for the late 1980's and early 1990's include composite primary aircraft structures and the space station. These structures are much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. A major research activity in computational structural mechanics (CSM) was initiated. The objective of the CSM activity is develop advanced structural analysis technology that will exploit modern and emerging computers such as computers with vector and/or parallel processing capabilities. The three main research activities underway in CSM include: (1) structural analysis methods development; (2) a software testbed for evaluating the methods; and (3) numerical techniques for parallel processing computers. The motivation and objectives of the CSM activity are presented and CSM activity is described. The current CSM research thrusts, and near and long term CSM research thrusts are outlined
Deflections of beam columns on multiple supports
Lateral deflections of beam columns on multiple equally spaced supports are calculated using the STAGS nonlinear structural analysis computer program. Three lateral loadings are considered, uniform, linear, and uniform over only the center bay. Two types of boundary conditions are considered at the end supports, clamped, and simple support. The effect of an initial sinusoidal imperfection are considered. Deflections in the center and end bays of the beam columns are presented as a function of applied axial compressive load. As the number of bays becomes large, the effect of boundary conditions on the deflections in the center bays diminishes. For cases involving a uniform or linearly varying load, imperfections can have a much larger effect on deflections in the center bays than can lateral pressure
Current research on shear buckling and thermal loads with PASCO: Panel Analysis and Sizing Code
The PASCO computer program to obtain the detailed dimensions of optimum stiffened composite structural panels is described. Design requirements in terms of inequality constraints can be placed on buckling loads or vibration frequencies, lamina stresses and strains, and overall panel stiffness for each of many load conditions. General panel cross sections can be treated. An analysis procedure involving a smeared orthotropic solution was investigated. The conservatism in the VIPASA solution and the danger in a smeared orthotropic solution is explored. PASCO's capability to design for thermal loadings is also described. It is emphasized that design studies illustrate the importance of the multiple load condition capability when thermal loads are present
Buckling loads for stiffened panels subjected to combined longitudinal compression and shear loadings: Results obtained with PASCO, EAL, and STAGS computer
The shear buckling analyses used in PASCO are summarized. The PASCO analyses include the basic VIPASA analysis, which is essentially exact for longitudinal and transverse loads, and a smeared orthotropic solution which was added to alleviate a shortcoming in the VIPASA analysis. Buckling results are presented for six stiffened panels loaded by combinations of longitudinal compression and shear. The buckling results were obtained with the PASCO, EAL, and STAGS computer programs. The EAL and STAGS solutions were obtained with a fine finite element mesh and provide calculations for the entire range of combinations of longitudinal compression and shear loadings
Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels
A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed
Buckling loads of stiffened panels subjected to combined longitudinal compression and shear: Results obtained with PASCO, EAL, and STAGS computer programs
Buckling analyses used in PASCO are summarized with emphasis placed on the shear buckling analyses. The PASCO buckling analyses include the basic VIPASA analysis, which is essentially exact for longitudinal and transverse loads, and a smeared stiffener solution, which treats a stiffened panel as an orthotropic plate. Buckling results are then presented for seven stiffened panels loaded by combinations of longitudinal compression and shear. The buckling results were obtained with the PASCO, EAL, and STAGS computer programs. The EAL and STAGS solutions were obtained with a fine finite element mesh and are very accurate. These finite element solutions together with the PASCO results for pure longitudinal compression provide benchmark calculations to evaluate other analysis procedures
- …