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DEFLECTIONS OF BEAM COLUMNS ON MULTIPLE SUPPORTS

W. Jefferson Stroud, William H. Greene, and Melvin S. Anderson
Langley Research Center

SUMMARY

Lateral deflections of beam columns on multiple, equally-spaced supports
were calculated using the STAGS nonlinear structural analysis computer program.
Three lateral loadings were'considere@: (1) aniform, (2) linear, and (3) uni-
form over only the center bay. The two types of boundary conditions considered
at the en@ supports were clamped and simple support. Some of the results
include the effect of an initial sinusoidal imperfection. Deflections in the
center and end bays of the beam columns are presented as a function of applied
axial compressive load.

These calculations were made to better understand the deflection pattern
of structural pancls on the space shuttle orbiter. Lateral deflections of the
structural panels can become extremely important because the deflections can
contribute to failure of the thermal protection system that is bonded to che

structural paneis.
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INTRODUCTION

The thermal protection system on the space shuttle orbiter coasists of
ceramic ;iles that are bonded to strain isolation pads (SIP) which, in turn,
are bonded to alumioum structural panels on the surface of the shuttle orbiter.
Lateral deflections of these structural panels can contribute to failure of the
tiles at the tile-SIP interface. In many cases, these panels are stiffened
panels in which the important deflections\are those that occur between stif-
feners. Panels are subjected to inplane and pressure loads, and have initial
imperfections. |

In an efkort to get a better understanding of the interaction between
pressure loadings, inplane loadings, initial imperfections, and resulting de-
flections of the aluminum structural panels, beam colusns on multiple supports
have been analyzed using a nonlinear structural analysis program. This report

describes the analysis approach and discusses the results.
- SYMBOLS

Values are given in both SI and U.S. Customary Units. The calculations

were made in U.S. Customary Units.

E Young's modulus A

1 moment of inertia of beam of unit width, %;

L distance between supports

P end load shown in figure 1

Pcr buckling load of simply-supported beam of length L, “igl .
q lateral load shown in figure 1

t thickness of beam; thickness of skin between stiffeners

8 peak-to-peak deflection illustrated in figure 4

60 values of § when P = 0

2

. PR AP i:, PR P I



TR

ANALYSIS APPROACH

Analysis Model

The analysis model, shown in figure 1, is a beam column on equally-spaced

supports. The beam column model is chosen because many of the critical buckling
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Figure L - Analysis model

conditions leading to large out-of-plane deflections involve high in-plane loads
transverse to the stiffener direction. Since it is the deformation of the skin
between stiffeners that is being examined, the stiffeners are represented by the
supports. A section of a beam column between supports is termed a bay. Most
calculations are made with eleven and thirteen bays. In some cases, check cal-
culations were made with twenty-one bays. For all cases, the supports are at
intervals of 5.44 cm (2.14 in.). The beam column has unit width, and‘has a thick-
ness of .13 cm (.05 in.). Each bay is modeled with 20 finite elements. Young's

modulus of the aluminum material is taken as 68.9 GPa (10x106 psi).

Analysis Procedure

The analyses were carried out with a nonlinear, finite element, structural

analysis computer program denoted STAGS (ref. 1). The finite elements are based
3
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on von Karman-type plate theory and thus the program can account for moderately

large rotations.

-

Loadings

The three types of lateral loadings shown in figure 2 were considered in
the analyses. They are: (a) a uniform lcad, (b) a linearly varying load, and
(c) a loading that is uniform over the single bay at the center and zero else-

where. An axial compressive end load (fig. 1) is applied in all cases.

37.9 kPa : N 1}'..
(5.5 psi) ) oo T

) S S R S N
(a) Uniform

75.8 kPa
(11 psi)

(b) Linear

37.9 kPa [T
(5.5 psi) i
A2 38 A8 B3 & X35 A

(c) Uniform over single bay

Figure 2. - Lateral loadings considered
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Initial Imperfection

The one type of initial imperfection considered in the analyses is

illustrated in figure 3. It is a sinusoidal imperfection with hﬁlf—wnvelength

. 00508 cm
(.0 in)
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Figure 3. - Assumed initial imperfection

equal to the distance between supports and with amplitude equal to .00508 cm
(.002 in.). This initial imperfection has the same shape as the buckle mode

of a simply-supported beam on multiple, equally-spaced supports.

RESULTS

Definition of Deflection

The deformation that is examined in these examples is the peak-to-peak
deflection & shown in figure 4. In a well-developed deflection pattern,
such as that shown in figure 4(a), the peak-to-peak deflections are measured
at the center of adjacent bays. When the end load P 1is small compared with

the lateral load q, the deflection pattern may be more like that illustrated

in figure 4(b). In this case, the peak-to-peak deflections are not measured
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(a) Well-developed deflection pattern
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(b) Deflection pattern for loadings in
which P is small compared with q

Figure 4. - Definition of deflection &
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at the center of adjacent bays. In cases involving an iaitial imperfection,
the deflections shown in the figures include the initial imperfection.

Results for Beams with Clamped Ends,
Deflections in Center Bays

In these results, which are given in figure 5, the beam is assumed to be
clamped at the end supports. The peak-to-peak deflection & 1s measured at
the center bay relative to an adjacent bay. In the figure, & 1is given as a
function of P/Pcr’ where P is the end load and P__ is the value of P that
causes buckling of a single bay of the beam assuming simple support boundary
conditions. (See symbol list). All of these results were obtained with an

eleven-bay model.

Initial imperfection. - In figure 5, the solid curQe through the circular

symbols is the only curve not calculated with STAGS. It is calculated with

the magnification formula

6§ = %

in which 60 is the initial value of 6, which in this case is caused solely
by the initial imperfection. This curve is included for reference purposes.
Results obtained with STAGS for the case of an initial imperfection only
~ no lateral load — are given by the dashed curve through the square symbols.
For small values of P/Pcr’ these results are very nearly the same as those
obtained with equation (1) — the solid curve with circular symbols, For that
reason, the dashed curve does not begin until P/Pcr 2~ .6. For larger values

of P/Pcr’ the results begin to differ. These differences are caused by dif-

(1)
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Figure 5. - Deflections in center bays for beam with clamped ends
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ferences in boundary conditions. The dashed curve was calculated for a beam
with clamped houndary conditions. The solid curve is eseentially the same as

would be obtained from STAGS with simple support boundary conditions.

Uniform load. - For the case of no initial imperfection, the results are
given by the lowest curve in figure S. Thése results are the same as one would
obtain for a beam column (single bay) of length 5.44 cm (2.14 in.) with clamped
boundary conditions. These‘deflectiqns will not become large until P = 4 Pcr
(the clamped buckling load for a bay). It is emphasized that the assumption of
no initial imperfection is unrealistic.

For the case of an initial imperfection, plus a uniform load, the results
for small values of P/Pcr are given by the centerline curve that passes through
the triangular symtols. The curve ends at P/Pcr$8 .6. For values of P/Pcr >.6,
the data falls on the dashed curve — the case of an initial imperfection and
zero lateral load. These results could be expected since the deflections
associated with the initial imperfection grow much faster than the deflections

associated with the uniform load.

Linear load. - The linear load case has the same characteristics as the
uniform load case. With no initial imperfection, the deflections grow very
slowly and are essentially the same as the lowest curve. With an initial im-
perfection, the deflections are slightly larger than those of the uniform load
case for small P/Pcr and are essentially equal to the uniform load case for

large P/Pcr'

Uniform load over only center bay. - This loading produces a deflection

pattern that is very different from either the uniform or linear load case.

As can be seen by the dashed curve through the diamond symbols, deflections grow
9
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rapidly with P/Pcr when no initial imperfection is present. With an initial
imperfection, the deflections grow even more rapidly.

Nesults for Beams with Simply-Supported Ends,
Deflection in Center Bays

In these results, which are given in figures 6 and 7, the beam is assumed

to be simply-supported at the end supports. The data in figures 6 and 7 are
presented in the same way as in figure 5.

Initial imperfection. ~ The solid curve through the circular symbols in
It is

figure 6 is for an initial sinusoidal imperfection and no lateral load.
the same as the corresponding curve in figure 5. The curve is calculated with

the magnification formula, equation (1). The results are essentially the same
as would be obtained from STAGS for this case.

Uniform load. - For the case of no initial imperfection, the results are

given by the lowest curve in figure 6. Unlike the clamped case, in which the

deflections do not grow rapidly as P/Pcr approaches 1.0, the deilections do
grow rapidly as P/Pcr approaches 1.0 for the simply supported case.

For the case of an initial imperfection, plus a uniform irad, the results
are given in figure 6 by the centerline curve that passes through the tri-
angular symbols. For all values of P/Pcr’ these results are som what larger
than the results obtained with only an initial imperfection.

The data for the two curves just discussed were obtained with a thirteen-

These two cases were also examined with a twenty-one-bay model.

bay model.
In both models, the deflections associated with (1) the initial imperfection,

(2) the lateral loading, and (3) the buckle mode were all in the same direction

in the center bay.
10
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Figure 6. - Deflections in center bays for beam with simply-supported ends

11



. 50 fo= I '~‘ ) 02
i

< Thirteen-bay odel
e}

T T

T T
Q Twenty-one-bay model f .
6, mm [T Jem T

. ! ¢ i@ P
.25 +— .01 ‘:

0 .1 .2 .3 4 .5 .6 N .8 .9 L0

Figure 7. - Deflections in center bays for beam with simply supported ends, uniform load,
no Initial imperfection

With a uniform load and no initial imperfection, the deflections given by
both the twenty-one-bay model and the thirteen-bay model are presented in
figure 7. It can be concluded that the simple support boundary condition pro-
duces a deflection pattern that lt2comes very large as P/Pcr approaches 1.0.
Also, the larger the number of bays, the nearer P/Pcr must be to 1.0 before
the deflections at the center become large.

Witk & uniform load, plus an initial imperfection, the twenty~-one-bay
model gives the same results as the thirteen-bay model for small values of
P/Pcr' For large valuves of P/Pcr’ the twenty-one-bay model gives results that
are smaller taan those of the thirteen-bay model and slightly larger than the
results obtained with the magnification formula considering only the initial
imperfection. For example, at P/Pcr- .877, the STAGS results for the twenty-
one-bay model are only 2.5 percent greater than results given by the magnifi-

cation formula. It can be concluded that as tke number of bays becomes large,

12
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it is the imperfection rather than the uniform pressure loading that produces
l;rge deflections in the center ba}s.

- It should pe pointed out that the deflections predicted by STAGS become
too large as P approaches Pct. An exact solution (refs. 2 and 3) does not
give infinite deflections at P = per' For the examples presemted in this
{eport, the STAGS resultg are probably acceptablg to at least P/Pcr-'.9, and

the conclusiqns reached based on these results are valid.

N

Linear load. - The linear load case has the same charactefistics and
essentially the same values of the deflection as the uniform load case. There-

fore, no results are shown for this case.

Uniform load over only center bay. -~ The results are presented in figure 6.

Except for cases in which P/Pcr is very large, the results for simple support
boundary conditions are the same as the results for clamped boundary conditions.
With no imperfection, the deflections are large and grow as P/Pcr approaches
1.0. With an initial imperfectiom, Fhe deflections are even larger. An eleven-

bay model was used for these calculatioms.

Results for Beams with Simply-Supported Ends,
Deflections in End Bays

The deflections in the end bays is presented in figure 8, which is organized

in the same was as figure 5, 6, and 7.

Initial imperfection. ~ The solid curve through the circular symbols is

for an initial sinusoidal imperfection and no lateral load. This same curve is
presented in figures 5 and 6. The curve is calculated with the magnification
formula, equation (1) and is essentially the same as would be obtained from

STAGS for this case.
13
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Figure 8. - Detlections in end bays for beam with simply-supported ends
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Uniform load. - For the case of no initial imperfection, the results are
given by the dashed curve through the diamond symbols. The deflections in the
end bays are much larger than and grow much faster than the deflections in the
center -bays.

For the case of an initial imperfection, in additiom to the uniform load,
the results are given by the solid line that passes through the triangular
symbols. Here, again, the‘deflrctions in the end bays are much larger than

and grow much faster than the : eflections in the center bays..

CONCLUDING REMARKS

Deflections of beam columms on multiple, equally-spaced supports were
calculated for a variety of loadings and boundary conditions using the STAGS
computer program. In all but two cases, the deflections became very large as
the end load approached the buckling load of a simply-supported column with
length equal to the distance between supports. Each of the two cases that
were exceptions had clamped boundary conditions and no initial imperfectiom.
In one of these cases, the lateral loading was uniform; in the other case, the
lateral loading varied linearly along the length. In these two special cases,
the deflections remained small for end loads exceeding the buckling load of a
simply-supported column with length equal to the distance betwecn supports.
Since small initial imperfections always exist in practical structures, it is
recommended that these two special cases be ignored for design purposes.

There are three other conclusions. (1) As the number of bays becomes
large, the effect of boundary conditions on the deflections in the center bays
diminishes. (2) For cases involving a uniform or linearly varying load, im-

perfections can have a much larger effect on deflections in the center bays

15



than can lateral pressure. (3) For beams with clamped ends, the deflections in
the center bays are representative of the deflections of the entire beam; how-
ever, for beams with ends that are not clamped, the end bays should be examined
separately. - In the case of simple-support boundary conditions, the deflections
in the end bays are much larger than and grow much faster than the deflections

in the center bays.

16
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