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DEFLECTIONS OF BEAM COLUMNS ON MnTIPLB SUPPORTS 

We Jefferson Stroud, William 8. Greene, and Melvin S. Anderson 
Langley Research Center 

Lateral def Lections of beam cdlumns on mu1 t iple, equally-spaced supports 

were calculated using the STAGS nonlinear structural analysis computer program. 

Three lateral loadings wcre'considered: ( I )  .~niform, (2) linear, and (3) uni- 

form over only the center bay. The two types of boundary conditions considered 

at the end supports were clamped and simple support. Some of the results 

include the effect of an initial sinusoidal imperfection. Deflections in the 

center and end bays of the beam columns are presented as a function of applied 

axial compressive load. 

These calculations were made to better understand the deflection pattern 

of structural panels on the space shuttle orbiter. Lateral deflections of the 

structural panels can become extremely important because the deflections can 

contribute to failure of the thereal protection system that is bonded to rhe 

structural paneis. 



. 
cerdc tiles that are baadcd to strain isolation put. (SI?) rh&cb, in turn, 

are bonded to alrrfmm structural panels on the surface of the shuttle orbiter. 

Lateral deflectianrr of these structural'paaels can contribute to failure of the 

tiles at the tile-SIP interface, In mamy cases, tbese panels are stiffened 

panels in which the bportant deflections are those that occur between stif- 

feners. Panels are subjected to inplane a d  predstne loads, and h k  initial 

In an effort to get a better understanding of the interaction b e m n  

pressure loadings, i n p h  loadings, initial imperfections, and resulting de- 

flections of the altminum structural panels, beer columns on rultiple supports 

have been analyzed using a nonlinear structural analysis program. This report 

describes the analysis approach and discusses the results. 

Values are given in both SI and U.S, Custamary Units. The calculations 

were made in U.S. Custarary hits. 

E Young's modulus 

t 3 
I moment of inertia of beam of unit width, - 12 

distance between supports 

end load shown in figure 1 
.a 

~ ' E I  
buckling load of simply-supported beam of length L, - 

L~ 
lateral load shown in figure 1 

t thickness of beam; thickness of skin between stiffeners 

6 peak-to-peak deflection illustrated in figure 4 

values of 6 when P = 0 
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ANALYSIS APPROACli 

Analysis Hodel 

The analysis model, shown in figure 1, is a beam column on equally-spaced 

supports. The beam column model is chosen because many of the critical buckling 

Figure L - Analysis model 

conditions leading to large out-of-plane deflections involve high in-plane loads 

transverse to the stiffener direction. Since it is the deformation of the skin 

between stiffeners that is being examined, the stiffeners are represented by the 

supports. A section of a beam column between supports is termed a bay. Most 

calculations are made with eleven and thirteen bays. In some cases, check cal- 

culations were made with twenty-one bays. For all cases, the supports are at 

intervals of 5.44 cm (2.14 in.). The beam column has unit width, and'has a thick- 

ness of .13 cm (.05 in.). Each bay is modeled vith 20 finite elements. Young's 

6 modulus of the aluminum material is taken as 68.9 GPa ( l o x  10 psi). 

Analysis Procedure 

The analyses were carried out with a nonlinear, finite element, structural 

analysis computer program denoted STAGS (ref. 1). The finite elements are based 
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von Karman-type p la te  theory and thus the program can account for moderately 

large rotations. 

Loadings 

The three types of l a t e r a l  loadings shown i n  f igure  2 were considered i n  

the analyses. They are: (a) a uniform lcad, (b) a l inea r ly  varying load, and 

(c) a loading tha t  is uniform o te r  the  s ingle  bay a t  the center  and zero else- 

where. An a x i a l  compressive end load ( f ig .  1) is applied i n  a l l  cases. 

(a) Uniform 

(b) Linear 

(c) Uniform over single bay 

Figure 2. - Lateral loadings considered 



Initial Imperfection 

The one type of initial imperfection considered in the analyses is 

illustrated in figure 3. It is a slnusoidal imperfection w(th k.lf-wavelen8th 

(.WK In)  
I 

Figure 3. - Assumed initial imperfection 

equal to the distance between supports and with amplitude equal to .00508 cm 

(.002 in.). This initial imperfection has the same shape as the buckle mode 

of a simply-supported beam on multiple, equally-spaced supports. 

RESULTS 

Definition of Deflection 

The deformation that is examined in these examples is the peak-to-peak 

deflection 6 shown in figure 4. In a well-developed deflection pattern, 

such as that shown in figure 4(a), the peak-to-peak deflections are measured 

at the center of adjacent bays. When the end load P is small compared with 

the lateral load q, the deflection pattern may be more like that illustrated 

in figure 4(b) .  In this case, the peak-to-peak deflections are not measured 
5 



(a) Well-developed deflection pattern 

(b) Deflection pattern for loadings in 

which P is  small compared with q 

Figure 4. - Definition of deflection 6 

f l  



at the center  of adjacent bays. I n  cases involving an i a i t i a l  imperfection, 

the deflect ions shown i n  the  f igures  include the  i n i t i a l  imperfection. 

Results f o r  Beams with Clamped Ends, 
Deflections i n  Center Bays 

In these r e su l t s ,  which a r e  given i n  f igure  5, the  beam is assumed t o  be 

clamped a t  the  end supports. The peak-to-peak def lec t ion  6 is measured a t  

the center bay r e l a t i v e  t o  an adjaceht bay. I n  the  f igure,  d is given a s  a 

function of PIPcr, where P is the  end load and PC= is the  value of P t h a t  

causes buckling of a s ingle  bay of the  beam assuming simple support boundary 

conditions. (See symbol list). A l l  of these r e s u l t s  were obtained with an 

eleven-bay model. 

I n i t i a l  imperfection. - In  f igure  5, the  s o l i d  curve through the  c i r c u l a r  

symbols is the  only curve not calculated with STAGS. It is calculated wich 

the magnification formula 

i n  which 60 is  the  i n i t i a l  value of 6 ,  which i n  t h i s  case is caused sole ly  

by the  i n i t i a l  imperfection. This curve is included f o r  reference purposes. 

Results obtained with STAGS fo r  the  case of an i n i t i a l  imperfection only 

- no l a t e r a l  load - a r e  given by the  dashed curve through the  square symbols. 

For small values of PIPcr, these r e s u l t s  a r e  very nearly the  same a s  those 

obtained with equation (1) - the so l id  curve with c i r cu la r  symbols. For tha t  

rsason, the dashed curve does not begin u n t i l  PIPcr 2 .6. For la rger  values 

of PIPcr, the  r e s u l t s  begin t o  d i f f e r .  These differences a re  caused by d i f -  



0 . 1  . 2  . 3  . 4  . 5  .6 . 7  . 9  LO 

PI Pcr 

Figure 5. - Deflections in center bays for team with clampd ends 



ferences in boundary conditions. The dashed curve was calculated for a beam 

with clamped boundary conditions. The solid curve is eseentially the same as 

wukl  be obtained from STAGS with simple support boundary conditions. 

Uniform load. - For the case of no initial imperfection, the results are 
given by the lowest curve in figure 5 .  These results are the same as one would 

obtain for a bean column (single bay) of length 5.44 cm (2.14 in.) with clamped 

boundary conditions. These'deflections will not become large until P 
= 'cr 

(the clamped buckling load for a bay). It is emphasized that the assumption of 

no initial imperfection is unrealistic. 

For the case of an initial imperfection, plus a uniform load, the results 

for saall values of PIPcr are given by the centerline curve that passes through 

the triangular symbols. The curve ends at PIPcr Z .6. For values of PIP > .6, cr 

the data falls on the dashed curve - the case of an initial imperfection and 
zero lateral load. These results could be expected since the deflections 

associated with the initial imperfection grow much faster than the deflections 

associated with the uniform load. 

Linear load. - The linear load case has che same characteristics as the 
uniform load case. With no initial imperfection, the deflections grow very 

slowly and are essentially the same as the lowest curve. With an initial im- 

perfection, the deflections are sltghtly larger than those of the uniform load 

case for small PIPcr and are essentially equal to the uniform load case for 

large PIPcr. 

Uniform load over only center bay. - This loading produces a deflection 
pattern that is very different from either the uniform or linear load case. 

As can be seen by the dashed curve through the diamond symbols, deflections grow 
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rapidly with PIP when no initial imperfection is present. With an initial 
c r 

imperfection, the deflections grow even more rapidly. 

Yesults for Beams with Simply-Supported Ends, 
Deflection in Center Bays 

In these results, which are given in figures 6 and 7, the beam is assuined 

to be simply-supported at the end supports. The data in figures 6 and 7 are 

presented in the same way as in figure 5. 

Initial imperfection. - The solid curve through the circular symbols 'in 
figure 6 is for an initial sinusoidal imperfection and no lateral load. It is 

the same as the corresponding curve in figure 5. The curve is calculated with 

the magnification formula, equation (1). The results are essentially the same 

as would be obtained from STAGS for this case. 

Uniform load. - Far the case of no initial imperfection, the results are 
given by the lowest curve in figure 6. Unlike the clamped case, in which the 

deflections do not grow rapidly as PIP approaches 1 .O, the deflections do 
C f  

grow rapidly as PIPcr approaches 1.0 for the simply supported case. 

For the case of an initial imperfection, plus a uniform !?ad, the results 

are given in figure 6 by the centerline curve that passes through the tri- 

angular symbols. For a11 values of PIPcr, these results are som .&at larger 

than the results obtained with only an initial imperfection. 

The data for the two curves just discussed were obtained with a thirteen- 

bay model. These two cases were also examined with a twenty-one-bay model. 

In both models, the deflections associated with ( I )  the initial imperfectio~, 

(2) the lateral loading, and (3) the buckle mode were all in the same direction 

in the cznter bay. 
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P' PC, 

Figure 6. - Deflections i n  center bays for beam with sinply-suppofkd ends 



PI Pcr 

Figure 7. - Oefkctions in center bays for barn with sinply supported ends, uniform Id, 

no initial imprlcdion 

With a uniform load and no initial imperfection, the deflections given by 

both the twenty-one-bay model and the thirteen-bay model are presented in 

figure 7. It can be concluded that the simple support boundary condition pro- 

duces a deflection pattern that L,acomes very large as P/P approaches 1.0. cr 

Also, the larger the number of bays, the nearer PIPcr must be to 1.0 before 

the deflections at the center become large. 

Witt a uniform load, plus an initial imperfection, the twenty-o~~e-bay 

model gives the same results as the thirteen-bay model for small values of 

PIPcr. For large values of PIP the twenty-one-bay model gives resultb that 
cr ' 

are smaller than those of the thirteen-bay model and slightly larger than the 

results obtained with the magnification formula considering only the initial 

imperfection. For example, at P/PCr1.877, the STAGS results for the twenty- 

one-bay model are only 2.5 percent greater than results given by the magnifi- 

cation formula. It can be concluded that as' tke number of bays becomes large, 



it is the bperfection rather than the uniform pressure loadding that produces 

Grge deflections in the center baits. 

-,It should be pointed out that the deflections predicted by STAGS become 

too large 9s P approaches P An exact solution (refs. 2 and 3) does not c r *  

give in f in i te  deflections a t  P = Per. For the exmaples presented i n  t h i s  

report, the STAGS resul ts  a re  probably acceptable t o  a t  least PIPcr = .9, and 

the conclusions reached based on these resu l t s  a r e  valid. 

Linear load. - The l inear load case has the same characterist ics and 

essentially the same values of the deflection a s  the unifarm load ca&. There- 

fore, no resul ts  are  shown for  t h i s  case. 

Uniform load over only center bay. - The resu l t s  a re  presented i n  figure 6. 

Except for cases i n  which PIPcr is very large, the resu l t s  for  simple suppmt 

boundary conditions a re  the same as  the resul ts  for  clamped boundary conditions. 

With no imperfection, the deflections are  large and grow a s  PIPcr approaches 

1.0. With an i n i t i a l  imperfection, the deflections a re  even larger. An eleven- 

bay model was used for these calculations. 

Results for Beams with Simply-Supported Ends, 
Deflections i n  End Bays 

The deflections i n  the end bays is  presented i n  figure 8, which is organized 

in  the same was as  figure 5, 6, and 7. 

I n i t i a l  imperfection. - The solid curve through the circular symbols is 

for  an i n i t i a l  sinusoidal imperfection and no l a t e r a l  load. This same curve is 

presented i n  figures 5 and 6. The curve is calculated with the magnification 

formula, equation (1) and is essentially the same a s  would be obtained from 

STAGS for t h i s  case. 
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a Uniform load, Initial 

PI Pcr 

FigUte 8. - De:lecticns in  end hays for beam with sin'ply-supported ends 



Uniform load. - For the case of no i n i t i a l  imperfection, the  r e s u l t s  a r e  

given by the  dashed curve through the  diamond symbols. The def lec t ions  i n  the  

end bays a r e  much larger  than and grow lsuch f a s t e r  than the  def lec t ions  i n  the  

center -bays. 

For the  case of an i n i t i a l  q e r f e c t i o n ,  i n  addit ion t o  the  uniform load, 

the r e s u l t s  a r e  given by the  s o l i d  l i n e  tha t  passes through the  t r iangular  

syubols. Here, again, the  de f l r c t ions  i n  the  end bays a r e  much larger  than 

and grow much f a s t e r  than the  e f l ec t ions  i n  the  center  bays.. 

Deflections of be= columns on multiple, equally-spaced supports were 

calculated for  a var ie ty  of loadings and boundary conditions using the  STAGS 

computer program. I n  a l l  but two cases, the  def lec t ions  became very large  a s  

the end load approached the buckling load of a simply-supported column with 

length equal t o  the  distance between supports. Each of the  two cases tha t  

were exceptions had clamped boundary conditions and no i n i t i a l  imperfection. 

In one of these cases, the l a t e r a l  loading was uniform; i n  the  other case, the  

l a t e r a l  loading varied l inea r ly  along the  length. I n  these two specia l  cases, 

the deflect ions remained small fo r  end loads exceeding the buckling load of a 

simply-supported column with length equal t o  the  distance between supports. 

Since small i p i t i a l  imperfections always e x i s t  i n  p rac t i ca l  s t ruc tures ,  it is 

recommended tha t  these two specia l  cases be ignored f o r  design purposes. 

There a r e  three other conclusions. (1) As the  number of bays becomes 

large, the  e f fec t  of boundary conditions on the  def lec t ions  i n  the center  bays 

diminishes. (2) For cases involving a uniform or  l inea r ly  varying load, im-  

perfections can have a much larger  e f fec t  on def lec t ions  i n  the  center  bays 



than can l a t e r a l  pressure. (3) For beams v i t h  clamped ends, the  def lec t ions  i n  

the center bays a r e  representat ive of the  def lec t ions  of the  e n t i r e  beam; how- 

ever, f o r  beams with ends t h a t  a r e  not clamped, the  end bays should be examined 

separately. - In  the  case of simple-support boundary conditions, the  def lec t ions  

i n  the  end bays a r e  much larger  than and grow much f a s t e r  than the  def lec t ions  

i n  the center bays. 
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