32 research outputs found

    Comparing the Sensitivity of Algal, Cyanobacterial and Bacterial Bioassays to Different Groups of Antibiotics

    Get PDF
    Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics van der Grinten, E.; Pikkemaat, M.G.; van den Brandhof, E.J.; Stroomberg, G.J.; Kraak, M.H.S. Published in: Chemosphere DOI: 10.1016/j.chemosphere.2010.04.011 Link to publication Citation for published version (APA): van der Grinten, E., Pikkemaat, M. G., van den Brandhof, E. J., Stroomberg, G. J., & Kraak, M. H. S. (2010). Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere, 80(1), 1-6. https://doi.org/10.1016/j.chemosphere.2010.04.011 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. a b s t r a c t Antibiotics may affect both primary producers and decomposers, potentially disrupting ecosystem processes. Hence, it is essential to assess the impact of antibiotics on aquatic ecosystems. The aim of the present study was therefore to evaluate the potential of a recently developed test for detecting antibiotics in animal tissue, the Nouws Antibiotic Test (NAT), as a sensitive bioassay to assess the effects of antibiotics in water. To this purpose, we determined the toxicity of sulphamethoxazole, trimethoprim, flumequine, tylosin, streptomycin, and oxytetracycline, using the NAT adapted for water exposure. The sensitivity of the NAT was compared to that of bioassays with bacteria (Microtox), cyanobacteria and green algae. In the Microtox test with Vibrio fischeri as test organism, no effects were observed for any of the test compounds. For three of the six antibiotics tested, the cyanobacteria were more vulnerable than the green algae when using photosynthetic efficiency as an endpoint. The lowest EC50 values for four out of six tested antibiotics were obtained using the NAT bacterial bioassay. The bacterial plate system responded to antibiotics at concentrations in the lg L À1 and lower mg L À1 range and, moreover, each plate proved to be specifically sensitive to the antibiotics group it was designed for. It is concluded that the NAT bioassay adapted for water exposure is a sensitive test to determine the presence of antibiotics in water. The ability of this test to distinguish five major antibiotic groups is a very strong additional value

    Identification strategy for unknown pollutants using high-resolution mass spectrometry: Androgen-disrupting compounds identified through effect-directed analysis

    Get PDF
    Effect-directed analysis has been applied to a river sediment sample of concern to identify the compounds responsible for the observed effects in an in vitro (anti-)androgenicity assay. For identification after non-target analysis performed on a high-resolution LTQ-Orbitrap, we developed a de novo identification strategy including physico-chemical parameters derived from the effect-directed analysis approach. With this identification strategy, we were able to handle the immense amount of data produced by non-target accurate mass analysis. The effect-directed analysis approach, together with the identification strategy, led to the successful identification of eight androgen-disrupting compounds belonging to very diverse compound classes: an oxygenated polyaromatic hydrocarbon, organophosphates, musks, and steroids. This is one of the first studies in the field of environmental analysis dealing with the difficult task of handling the large amount of data produced from non-target analysis. The combination of bioassay activity assessment, accurate mass measurement, and the identification and confirmation strategy is a promising approach for future identification of environmental key toxicants that are not included as priority pollutants in monitoring programs

    Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods

    No full text
    Monofluorinated polycyclic aromatic hydrocarbons (F-PAHs) are useful reference compounds for a broad spectrum of PAH studies. The pyrene metabolite 1-hydroxypyrene is often used as a biomarker of PAH exposure. Two species, isopod (Porcellio scaber) and flatfish (Platichthys flesus), that produce 1-hydroxypyrene as the major intermediary metabolite and have distinct phase-II conjugates, were selected to investigate the cytochrome P450 catalyzed metabolism of 1-fluoropyrene. The fluorine atom blocks one of the four most favored carbon atoms, yielding different metabolite patterns and the results obtained in the selected species were compared with metabolite profiles obtained for unsubstituted pyrene. Charge densities in 1-fluoropyrene measured wit

    Identification of Unknown Microcontaminants in Dutch River Water by Liquid Chromatography-High Resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy.

    No full text
    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the µg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins

    Identification of Unknown Microcontaminants in Dutch River Water by Liquid Chromatography-High Resolution Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy.

    No full text
    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the µg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins
    corecore