12,588 research outputs found

    Balloon telescope studies of Venus

    Get PDF
    Determination of ice clouds and water vapor in Venus atmosphere from balloon observation

    Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene

    Full text link
    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane, but is instead governed by a crossover between two competing molecular transport mechanisms.Comment: 6 pages, 3 figure

    Emotion Learning and Memory in Schizophrenia

    Full text link
    • Prior research indicates that processing of emotional information is particularly problematic for individuals with schizophrenia. • An important component of emotional processing is the accurate encoding and recall of emotionally valenced information. • The current study addresses this matter by investigating performance on a task assessing learning, recall, and recognition in patients with schizophrenia. • In this manner, recall of emotionally valenced information may be investigate

    Memory device for two-dimensional radiant energy array computers

    Get PDF
    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also include

    Preparation, analysis and release of simulated interplanetary grains into low Earth orbit

    Get PDF
    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere observations were the only method of deducing the properties of extraterrestrial particles. In order to elucidate the detailed characteristics of observed dust, the observations must be compared with theoretical studies, some of which are discussed in this volume, or compared with terrestrial laboratory experiments. The formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles were discussed. Efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit were discussed, thus extending the conditions under which dust experiments may be performed

    Parameterization of the Angular Distribution of Gamma Rays Produced by p-p Interaction in Astronomical Environment

    Get PDF
    We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model by Kamae et al. (2005) and its extension by Kamae et al. (2006). This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process and Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c^2. We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find that the predicted gamma-ray spectrum to be dependent on the viewing angle.Comment: 8 pages, 7 figures, figure 7 updated, accepted for publication in ApJ, text updated to match changes by the editor, two refs updated from preprints to full journal

    Digital voltage-controlled oscillator

    Get PDF
    Digital voltage-controlled oscillator generates a variable frequency signal controlled linearly about a center frequency with high stability and is phase controlled by an applied voltage. Integration ahead of the digital circuitry provides linear operation with control voltage having appreciable noise components
    • …
    corecore