111 research outputs found

    Induction and suppression of an autoimmune disease by oligomerized T cell epitopes: enhanced in vivo potency of encephalitogenic peptides

    Get PDF
    T cell epitope peptides derived from proteolipid protein (PLP139-151) or myelin basic protein (MBP86-100) induce experimental autoimmune encephalomyelitis (EAE) in "susceptible" strains of mice (e.g., SJL/J). In this study, we show that the encephalitogenic effect of these epitopes when injected subcutaneously in complete Freund's adjuvant was significantly enhanced if administered to the animal in a multimerized form as a T cell epitope oligomer (i.e., as multiple repeats of the peptide epitope, such as 16-mers). Oligomer-treated SJL/J mice developed EAE faster and showed a more severe progression of the disease than animals treated with peptide alone. In addition, haplotype-matched B10.S mice, "resistant" to EAE induction by peptide, on injection of 16-mers developed a severe form of EAE. Even more striking, however, was the dramatic suppression of incidence and severity of the disease, seen after single intravenous injections of only 50 microg of the PLP139-151 16-mer, administered to SJL/J mice 7 d after the induction of the disease. Although relapse occurred at about day 45, an additional injection several days before that maintained the suppression. Importantly, the specific suppressive effect of oligomer treatment was also evident if EAE was induced with spinal cord homogenate instead of the single peptide antigen. By contrast, the PLP139-151 peptide accelerated rather than retarded the progression of disease

    The stringy nature of the 2d type-0A black hole

    Full text link
    We investigate the thermodynamics of the RR charged two-dimensional type-0A black hole background at finite temperature, and compare with known 0A matrix model results. It has been claimed that there is a disagreement for the free energy between the spacetime and the dual matrix model. Here we find that this discrepancy is sensitive to how the cutoff is implemented on the spacetime side. In particular, the disagreement is resolved once we put the cutoff at a fixed distance away from the horizon, as opposed to a fixed position in space. Furthermore, the mass and the entropy of the black hole itself add up to an analytic contribution to the free energy, which is precisely reproduced by the 0A matrix model. We also use results from the 0A matrix model to predict the next to leading order contribution to the entropy of the black hole. Finally, we note that the black hole is characterized by a Hagedorn growth in its density of states below the Hagedorn temperature. This, together with other results, suggests there is a phase transition at this temperature.Comment: 1+21 pages; v2: Substantial changes in the body of the paper, main results the same. Clarified discussion on the thermodynamics, added section on a phase transition, references added. v3: Typos corrected. v4: Final version, to appear in JHE

    Large N limit of Extremal Non-supersymmetric Black Holes

    Get PDF
    The large N limit of extremal non-supersymmetric Type-I five-dimensional string black holes is studied from the point of view of D-branes. We find that the agreement between the D-brane and the black-hole picture is due to an asymptotic restoration of supersymmetry in the large NN limit in which both pictures are compared. In that limit Type-I string perturbation theory is effectively embedded into a Type-IIB perturbation theory with unbroken supersymmetric charges whose presence guarantees the non-renormalization of mass and entropy as the effective couplings are increased. In this vein, we also study the near-horizon geometry of the Type-I black hole using D5-brane probes to find that the low energy effective action for the probe is identical to the corresponding one in the auxiliary Type-IIB theory in the large N limit.Comment: 25 pages, harvmac, typos corrected and references adde

    Decaying D-branes and Moving Mirrors

    Full text link
    We present an exact time-dependent solution to the effective D-brane world-volume theory which describes an inhomogeneous decay of a brane-antibrane system. We compute the quantum energy flux induced by the particle creation in this inhomogeneous and time-dependent background. We find that this calculation is essentially equivalent to that of the moving mirror system. In the initial stage, the energy flux turns out to be thermal with the temperature given by the inverse of the distance between the brane and the antibrane. Later it changes its sign and becomes a negative energy flux. Our result may be relevant for the (p)reheating process or/and the evolution of cosmic string network after stringy brane inflation.Comment: 26pages, 4 figures, Latex, typos correcte

    Remarks on the rolling tachyon BCFT

    Full text link
    It is shown how the boundary correlators of the Euclidean theory corresponding to the rolling tachyon solution can be calculated directly from Sen's boundary state. The resulting formulae reproduce precisely the expected perturbative open string answer. We also determine the open string spectrum and comment on the implications of our results for the timelike theory.Comment: 20 pages, harvmac(b), no figure

    Symmetries at stationary Killing horizons

    Full text link
    It has often been suggested (especially by Carlip) that spacetime symmetries in the neighborhood of a black hole horizon may be relevant to a statistical understanding of the Bekenstein-Hawking entropy. A prime candidate for this type of symmetry is that which is exhibited by the Einstein tensor. More precisely, it is now known that this tensor takes on a strongly constrained (block-diagonal) form as it approaches any stationary, non-extremal Killing horizon. Presently, exploiting the geometrical properties of such horizons, we provide a particularly elegant argument that substantiates this highly symmetric form for the Einstein tensor. It is, however, duly noted that, on account of a "loophole", the argument does fall just short of attaining the status of a rigorous proof.Comment: 11 pages, Revte

    Casimir Effect of Graviton and the Entropy Bound

    Full text link
    In this note we calculate the Casimir effect of free thermal gravitons in Einstein universe and discuss how it changes the entropy bound condition proposed recently by Verlinde [hep-th/0008140] as a higher dimensional generalization of Cardy's formula for conformal field theories (CFT). We find that the graviton's Casimir effect is necessary in order not to violate Verlinde's bound for weakly coupled CFT. We also comment on the implication of this new Cardy's formula to the thermodynamics of black pp-brane.Comment: 10 pages; v2. a typo correcte

    Holographic Central Charge for 2-Dimensional de Sitter Space

    Get PDF
    Recently, investigations have begun into a holographic duality for two-dimensional de Sitter space. In this paper, we evaluate the associated central charge, using a modified version of the canonical Hamiltonian method that was first advocated by Catelani {\it et al}. Our computation agrees with that of a prior work (Cadoni {\it et al}), but we argue that the method used here is, perhaps, aesthetically preferable on holographic grounds. We also confirm an agreement between the Cardy and thermodynamic entropy, thus providing further support for the conjectured two-dimensional de Sitter/conformal field theory correspondence.Comment: 19 pages, Latex; discussion (Section 4) and references adde

    On Minisuperspace Models of S-branes

    Full text link
    In this note we reconsider the minisuperspace toy models for rolling and bouncing tachyons. We show that the theories require to choose boundary conditions at infinity since particles in an exponentially unbounded potential fall to infinity in finite world-sheet time. Using standard techniques from operator theory, we determine the possible boundary conditions and we compute the corresponding energy spectra and minisuperspace 3-point functions. Based on this analysis we argue in particular that world-sheet models of S-branes possess a discrete spectrum of conformal weights containing both positive and negative values. Finally, some suggestions are made for possible relations with previous studies of the minisuperspace theory.Comment: 24 pages, 3 figure

    Energy Quantisation in Bulk Bouncing Tachyon

    Full text link
    We argue that the closed string energy in the bulk bouncing tachyon background is to be quantised in a simple manner as if strings were trapped in a finite time interval. We discuss it from three different viewpoints; (1) the timelike continuation of the sinh-Gordon model, (2) the dual matrix model description of the (1+1)-dimensional string theory with the bulk bouncing tachyon condensate, (3) the c_L=1 limit of the timelike Liouville theory with the dual Liouville potential turned on. There appears to be a parallel between the bulk bouncing tachyon and the full S-brane of D-brane decay. We find the critical value \lambda_c of the bulk bouncing tachyon coupling which is analogous to \lambda_o=1/2 of the full S-brane coupling, at which the system is thought to be at the bottom of the tachyon potential.Comment: 25 pages, minor changes, one reference adde
    • …
    corecore